We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
139
1
avatar

Consider the curve with equation\({Re}\left( \dfrac{1}{z} \right) = \dfrac{1}{6}.\)
For each complex number in the following list,\(1, 4i, 3+3i, 3-3i, 1 - 2i, 2+ 3i, 6,\)
figure out whether each one is on the curve, then enter "yes" or "no" in the blank corresponding to each option below.

 Feb 7, 2019

Best Answer 

 #1
avatar+5797 
+1

\(1: \text{ obviously no}\\ 4i: \text{ hopefully obviously no}\\ 3+3i:~Re\left(\dfrac{1}{3+3i}\right) = Re\left(\dfrac{3-3i}{18}\right) = \dfrac 1 6 \text{ so yes}\\ 3-3i: \text{same answer as for }3+3i\\ 1-2i: Re\left(\dfrac{1+2i}{5}\right) = \dfrac 1 5 \neq \dfrac 1 6 \text{ so no}\\ 2+3i: Re\left(\dfrac{2-3i}{13}\right) = \dfrac{2}{13} \neq \dfrac 1 6 \text{ so no}\\ 6: \text{ obviously yes}\)

.
 Feb 7, 2019
 #1
avatar+5797 
+1
Best Answer

\(1: \text{ obviously no}\\ 4i: \text{ hopefully obviously no}\\ 3+3i:~Re\left(\dfrac{1}{3+3i}\right) = Re\left(\dfrac{3-3i}{18}\right) = \dfrac 1 6 \text{ so yes}\\ 3-3i: \text{same answer as for }3+3i\\ 1-2i: Re\left(\dfrac{1+2i}{5}\right) = \dfrac 1 5 \neq \dfrac 1 6 \text{ so no}\\ 2+3i: Re\left(\dfrac{2-3i}{13}\right) = \dfrac{2}{13} \neq \dfrac 1 6 \text{ so no}\\ 6: \text{ obviously yes}\)

Rom Feb 7, 2019

29 Online Users

avatar