We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
290
1
avatar

Consider the line with equation

\((2-i)z + (2+i)\overline{z} = 20.\)
For each complex number in the following list,

\(2, 4+2i, 3i, 1-4i, 5, 3, 10i,\)
figure out whether each one is on the line, then enter "yes" or "no" in the blank corresponding to each option.

 Feb 7, 2019
 #1
avatar+23075 
+8

Consider the line with equation
\(\large (2-i)z + (2+i)\overline{z} = 20. \)

For each complex number in the following list,
\(\large 2,\ 4+2i,\ 3i,\ 1-4i,\ 5,\ 3,\ 10i,\)

figure out whether each one is on the line.

 

\(\text{Let $z = a+bi$} \\ \text{Let $\overline{z} = a-bi$}\)

 

\(\begin{array}{|rcll|} \hline (2-i)z + (2+i)\overline{z} &=& 20 \quad & | \quad z = a+bi, \ \overline{z} = a-bi \\ (2-i)(a+bi) + (2+i)(a-bi) &=& 20 \\ 2a+2bi-ia-bi^2 +2a -2bi +ia -bi^2 &=& 20 \\ 2a-bi^2 +2a -bi^2 &=& 20 \\ 4a-2bi^2 &=& 20 \quad & | \quad i^2 = -1 \\ 4a+2b &=& 20 \quad & | \quad : 2 \\ \mathbf{2a+b} &\mathbf{=}& \mathbf{10} \\ \hline \end{array}\)

 

\(\begin{array}{|l|l|c|l|c|} \hline &\text{list } z = a+bi:&& \mathbf{2a+b = 10} & \text{on the line} \\ \hline 1) & 2: & a= 2 & 2\cdot 2 + 0 \ne 10 \\ & & b= 0 \\\\ \hline 2) & 4+2i: & a= 4 & 2\cdot 4 + 2 \mathbf{= 10} & \checkmark \\ & & b= 2 \\\\ \hline 3) & 3i: & a= 0 & 2\cdot 0 + 3 \ne 10 \\ & & b= 3 \\\\ \hline 4) & 1-4i: & a= 1 & 2\cdot 1 -4 \ne 10 \\ & & b= -4 \\\\ \hline 5) & 5: & a= 5 & 2\cdot 5 + 0 \mathbf{= 10} & \checkmark \\ & & b= 0 \\\\ \hline 6) & 3: & a= 3 & 2\cdot 3 + 0 \ne 10 \\ & & b= 0 \\\\ \hline 7) & 10i: & a= 0 & 2\cdot 0 + 10 \mathbf{= 10} & \checkmark \\ & & b= 10 \\\\ \hline \end{array} \)

 

laugh

 Feb 7, 2019
edited by heureka  Feb 7, 2019
edited by heureka  Feb 7, 2019

14 Online Users