+0  
 
0
1250
1
avatar+112 

Consider this system of equations:

\(^2/_3x+\text{ }^3/_5y=12\) (equation A)

\(^5/_2y-3x=6\)(equation B)

The expression that gives the value of x is \(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\).
The solution for the system of equations is \(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\).

 

\(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\\ \boxed{^{5a}/_3+\text{ }^{2b}/_5\text{ }\text{ }\text{ }\text{ }\text{ }\\\ ^{3a}/_5-\text{ }^{5b}/_2\\ ^{5a}/_2+\text{ }^{3b}/_5\\ ^{5a}/_3-\text{ }^{2b}/_5\\ ^{3a}/_2+\text{ }^b/_5}\) \(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\\ \boxed{(^{1118}/_{47},\text{ }^{396}/_{47})\text{ }\text{ }\text{ }\\ (^{33}/_{13},\text{ }^{50}/_{13})\\ (^{99}/_{13},\text{ }^{150}/_{13})\\ (8,12)}\)

 Jan 24, 2018
edited by SpaceModo  Jan 24, 2018
 #1
avatar+129899 
+2

(2/3)x  + (3/5)y  =  12

-3x   + (5/2)y  =  6

 

Mutiply  the first equation through by the common denominator of 3 and 5 = 15

Multiply the second equation through by 2

 

So we have

 

10x  +  9y   =  180    multipy through by 6  =   60x + 54y  = 1080    (1)

-6x  +  5y      =  12  multiply through   by 10  =   -60x  + 50y  =   120    (2)

 

Add (1)  and (2)

 

104y  =  1200     divide by  104

 

y =   1200/104 =   600/52  =  150 / 13

 

Obviously, only one answer has a "y" answer that  =  150/13.....so that must be the correct one

 

 

cool cool cool

 Jan 24, 2018

1 Online Users