+0  
 
0
207
1
avatar+102 

Consider this system of equations:

\(^2/_3x+\text{ }^3/_5y=12\) (equation A)

\(^5/_2y-3x=6\)(equation B)

The expression that gives the value of x is \(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\).
The solution for the system of equations is \(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\).

 

\(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\\ \boxed{^{5a}/_3+\text{ }^{2b}/_5\text{ }\text{ }\text{ }\text{ }\text{ }\\\ ^{3a}/_5-\text{ }^{5b}/_2\\ ^{5a}/_2+\text{ }^{3b}/_5\\ ^{5a}/_3-\text{ }^{2b}/_5\\ ^{3a}/_2+\text{ }^b/_5}\) \(\boxed{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\downarrow}\\ \boxed{(^{1118}/_{47},\text{ }^{396}/_{47})\text{ }\text{ }\text{ }\\ (^{33}/_{13},\text{ }^{50}/_{13})\\ (^{99}/_{13},\text{ }^{150}/_{13})\\ (8,12)}\)

SpaceModo  Jan 24, 2018
edited by SpaceModo  Jan 24, 2018
 #1
avatar+89775 
+2

(2/3)x  + (3/5)y  =  12

-3x   + (5/2)y  =  6

 

Mutiply  the first equation through by the common denominator of 3 and 5 = 15

Multiply the second equation through by 2

 

So we have

 

10x  +  9y   =  180    multipy through by 6  =   60x + 54y  = 1080    (1)

-6x  +  5y      =  12  multiply through   by 10  =   -60x  + 50y  =   120    (2)

 

Add (1)  and (2)

 

104y  =  1200     divide by  104

 

y =   1200/104 =   600/52  =  150 / 13

 

Obviously, only one answer has a "y" answer that  =  150/13.....so that must be the correct one

 

 

cool cool cool

CPhill  Jan 24, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.