Set a=6 - 4sqrt(2), y=Sqrt(2) - 1, n=0, 1, 2, 3.........etc. Iterate the following..........
y=[1 - (1 - y^4)^1/4] / [ 1 - (1 + y^4)^1/4], then:
a=a(1 + y)^4 - [2^(2n+3). y(1 + y +y^2)]..........converges to what?.
I just want to rewrite your question.....
Set
\(a=6 - 4\sqrt{2}, \qquad y=\sqrt2 - 1, \qquad n=0, 1, 2, 3.........etc. \)
Iterate the following..........
\(y=\frac{1 - (1 - y^4)^{1/4}}{ 1 - (1 + y^4)^{1/4}}\)
then:
\(a=a(1 + y)^4 - [2^{(2n+3)}* y(1 + y +y^2)]\)
..........converges to what?.
I just want to rewrite your question.....
Set
\(a=6 - 4\sqrt{2}, \qquad y=\sqrt2 - 1, \qquad n=0, 1, 2, 3.........etc. \)
Iterate the following..........
\(y=\frac{1 - (1 - y^4)^{1/4}}{ 1 - (1 + y^4)^{1/4}}\)
then:
\(a=a(1 + y)^4 - [2^{(2n+3)}* y(1 + y +y^2)]\)
..........converges to what?.
Asked again here
http://web2.0calc.com/questions/sorry-correction
I have no idea if the questions are identical of which one is the one the guest wants answered.