| 1. | f(x) = 2(x - 1) |
| Using the rule \(\frac{x^a}{x^b}=x^{a-b}\) , we have |
| f(x) = \(\frac{2^x}{2^1}\) |
| ||
| f(x) = \(\frac{2^x}{2}\) |
| ||
| f(x) = \(\frac12\cdot2^x\) |
| Here, a = 1/2 and b = 2 . | |
|
| |||
| 2. | f(x) = 2(3x + 4) |
| Using the rule xa · xb = x(a + b) , we have |
| f(x) = 23x · 24 |
| ||
| f(x) = 23x · 16 |
| Using the rule (xa)b = xab , we have | |
| f(x) = (23)x · 16 |
| ||
| f(x) = 16 · 8x | Here, a = 16 and b = 8 . |
| 1. | f(x) = 2(x - 1) |
| Using the rule \(\frac{x^a}{x^b}=x^{a-b}\) , we have |
| f(x) = \(\frac{2^x}{2^1}\) |
| ||
| f(x) = \(\frac{2^x}{2}\) |
| ||
| f(x) = \(\frac12\cdot2^x\) |
| Here, a = 1/2 and b = 2 . | |
|
| |||
| 2. | f(x) = 2(3x + 4) |
| Using the rule xa · xb = x(a + b) , we have |
| f(x) = 23x · 24 |
| ||
| f(x) = 23x · 16 |
| Using the rule (xa)b = xab , we have | |
| f(x) = (23)x · 16 |
| ||
| f(x) = 16 · 8x | Here, a = 16 and b = 8 . |