+0  
 
0
40
1
avatar

FInd the area of the triangle with vertices (1,6), (1,11), and (7,43).

 Aug 3, 2022

Best Answer 

 #1
avatar+113 
+2

This is probably pre vector algebra or something.

Let's call these vertices A(1,6), B(1,11) and C(7,43).

We can find the length of each of the sides using the pythagorean theorem.

AB = (0,5), length = 5

AC = (6,37), length = \(\sqrt{6^2 + 37^2} = \sqrt{1,405} \approx 37.48\)

BC = (6,32), length = \(\sqrt{6^2 + 32^2} = \sqrt{1,405} \approx 32.56\)

 

Use herons formula, see https://www.mathsisfun.com/geometry/herons-formula.html

 

s = 1/2 ( a + b + c ) = 1/2 ( 5 + 37.48 + 32.56 ) = 1/2 (75.04) = 37.52

The area is A = \(\sqrt{s\times(s-a)\times(s-b)\times(s-c)} = \sqrt{37.52\times32.52\times 0.04\times 4.96} = \sqrt{242.08} \approx15.56 \)

 

 Aug 3, 2022
 #1
avatar+113 
+2
Best Answer

This is probably pre vector algebra or something.

Let's call these vertices A(1,6), B(1,11) and C(7,43).

We can find the length of each of the sides using the pythagorean theorem.

AB = (0,5), length = 5

AC = (6,37), length = \(\sqrt{6^2 + 37^2} = \sqrt{1,405} \approx 37.48\)

BC = (6,32), length = \(\sqrt{6^2 + 32^2} = \sqrt{1,405} \approx 32.56\)

 

Use herons formula, see https://www.mathsisfun.com/geometry/herons-formula.html

 

s = 1/2 ( a + b + c ) = 1/2 ( 5 + 37.48 + 32.56 ) = 1/2 (75.04) = 37.52

The area is A = \(\sqrt{s\times(s-a)\times(s-b)\times(s-c)} = \sqrt{37.52\times32.52\times 0.04\times 4.96} = \sqrt{242.08} \approx15.56 \)

 

tuffla2022 Aug 3, 2022

10 Online Users