how can i proof cos(10)+cos(82)+cos(154)+cos(226)+cos(298)=0
cos(10)+cos(82)+cos(154)+cos(226)+cos(298)=0
Before beginning this proof, we need to note several things...
(1) cos A + cos B = 2cos[(A + B)/2]*cos[(A - B)/2]
(2) 2cos(36) = [1 +sqrt(5)] / 2 = Phi
(3) 2cos(108) = - [sqrt(5) - 1]/ 2 = -phi
So we have:
cos(226) + cos(154) = 2cos(380/2) *cos(72/2) = 2cos(190)cos(36) = cos(190)[2cos(36)] = cos(190)*Phi = cos(180 + 10)*Phi = [cos(180)cos(10) - sin(180)sin(10)]*Phi = -cos(10)*Phi
cos (298) + cos (82) = 2cos(380/2)*cos(216/2) = 2cos(190)cos(108) = cos(190)[2cos(108)] =
cos(190)(-phi) = -cos(190)*phi ....amd we have shown that cos(190) = -cos(10).....so.....-[cos(190)*phi ] = -[-cos(10)]*phi = cos(10)*phi
So....
cos(10)+cos(82)+cos(154)+cos(226)+cos(298) =
cos(10) + [cos(226) + cos(154)] + [cos(298) + cos(82)] =
cos (10 ) - cos(10)*Phi + cos(10)*phi = [factor out cos(10) ]
cos(10) [ 1 - Phi + phi] =
cos(10) [ 1 + phi - Phi] and by definition, 1 + phi = Phi ....so....
cos(10) [ Phi - Phi] = cos(10) * 0 = 0
cos(10)+cos(82)+cos(154)+cos(226)+cos(298)=0
Before beginning this proof, we need to note several things...
(1) cos A + cos B = 2cos[(A + B)/2]*cos[(A - B)/2]
(2) 2cos(36) = [1 +sqrt(5)] / 2 = Phi
(3) 2cos(108) = - [sqrt(5) - 1]/ 2 = -phi
So we have:
cos(226) + cos(154) = 2cos(380/2) *cos(72/2) = 2cos(190)cos(36) = cos(190)[2cos(36)] = cos(190)*Phi = cos(180 + 10)*Phi = [cos(180)cos(10) - sin(180)sin(10)]*Phi = -cos(10)*Phi
cos (298) + cos (82) = 2cos(380/2)*cos(216/2) = 2cos(190)cos(108) = cos(190)[2cos(108)] =
cos(190)(-phi) = -cos(190)*phi ....amd we have shown that cos(190) = -cos(10).....so.....-[cos(190)*phi ] = -[-cos(10)]*phi = cos(10)*phi
So....
cos(10)+cos(82)+cos(154)+cos(226)+cos(298) =
cos(10) + [cos(226) + cos(154)] + [cos(298) + cos(82)] =
cos (10 ) - cos(10)*Phi + cos(10)*phi = [factor out cos(10) ]
cos(10) [ 1 - Phi + phi] =
cos(10) [ 1 + phi - Phi] and by definition, 1 + phi = Phi ....so....
cos(10) [ Phi - Phi] = cos(10) * 0 = 0