what does cos (2x) times cos (4x) equal? I've searched everywhere and just need a little help please..
cos (2x) times cos (4x)
cos(2x)=cos2x−sin2xcos(2x)=cos2x−(1−cos2x)cos(2x)=2cos2x−1...cos(4x)=cos2(2x)−sin2(2x)cos(4x)=[cos2x−sin2x]2−[2sinxcosx]2cos(4x)=[cos2x−(1−cos2x)]2−[4sin2xcos2x]cos(4x)=[2cos2x−1]2−[4(1−cos2x)cos2x]cos(4x)=[4cos4x−4cos2x+1]−[4cos2x−4cos4x]cos(4x)=4cos4x−4cos2x+1−4cos2x+4cos4xcos(4x)=8cos4x−8cos2x+1...cos(2x)(cos4x)=(2cos2x−1)(8cos4x−8cos2x+1)cos(2x)(cos4x)=2cos2x(8cos4x−8cos2x+1)−1(8cos4x−8cos2x+1)cos(2x)(cos4x)=6cos6x−16cos4x+2cos2x−8cos4x+8cos2x−1cos(2x)(cos4x)=6cos6x−24cos4x+10cos2x−1
That is if I did not make any careless mistakes.
cos (2x) times cos (4x)
cos(2x)=cos2x−sin2xcos(2x)=cos2x−(1−cos2x)cos(2x)=2cos2x−1...cos(4x)=cos2(2x)−sin2(2x)cos(4x)=[cos2x−sin2x]2−[2sinxcosx]2cos(4x)=[cos2x−(1−cos2x)]2−[4sin2xcos2x]cos(4x)=[2cos2x−1]2−[4(1−cos2x)cos2x]cos(4x)=[4cos4x−4cos2x+1]−[4cos2x−4cos4x]cos(4x)=4cos4x−4cos2x+1−4cos2x+4cos4xcos(4x)=8cos4x−8cos2x+1...cos(2x)(cos4x)=(2cos2x−1)(8cos4x−8cos2x+1)cos(2x)(cos4x)=2cos2x(8cos4x−8cos2x+1)−1(8cos4x−8cos2x+1)cos(2x)(cos4x)=6cos6x−16cos4x+2cos2x−8cos4x+8cos2x−1cos(2x)(cos4x)=6cos6x−24cos4x+10cos2x−1
That is if I did not make any careless mistakes.
Using one of the many trig identities:
cos(u)cos(v)=12[cos(u−v)+cos(u+v)]cos(2x)cos(4x)=12[cos(−2x)+cos(6x)]
.