+0  
 
0
7248
2
avatar

what does cos (2x) times cos (4x) equal? I've searched everywhere and just need a little help please..

Guest Nov 9, 2015

Best Answer 

 #1
avatar+93884 
+5

cos (2x) times cos (4x) 

 

\(cos(2x)=cos^2x-sin^2x\\ cos(2x)=cos^2x-(1-cos^2x)\\ cos(2x)=2cos^2x-1\\ ...\\ cos(4x)=cos^2(2x)-sin^2(2x)\\ cos(4x)=[cos^2x-sin^2x]^2 -[2sinxcosx]^2\\ cos(4x) =[cos^2x-(1-cos^2x)]^2 -[4sin^2xcos^2x]\\ cos(4x) =[2cos^2x-1]^2 -[4(1-cos^2x)cos^2x]\\ cos(4x) =[4cos^4x-4cos^2x+1] -[4cos^2x-4cos^4x]\\ cos(4x) =4cos^4x-4cos^2x+1-4cos^2x+4cos^4x\\ cos(4x) =8cos^4x-8cos^2x+1\\ ...\\ cos(2x)(cos4x)=(2cos^2x-1)(8cos^4x-8cos^2x+1)\\ cos(2x)(cos4x)=2cos^2x(8cos^4x-8cos^2x+1)-1(8cos^4x-8cos^2x+1)\\ cos(2x)(cos4x)=6cos^6x-16cos^4x+2cos^2x-8cos^4x+8cos^2x-1\\ cos(2x)(cos4x)=6cos^6x-24cos^4x+10cos^2x-1\\ \)

 

That is if I did not make any careless mistakes.    frown

Melody  Nov 9, 2015
 #1
avatar+93884 
+5
Best Answer

cos (2x) times cos (4x) 

 

\(cos(2x)=cos^2x-sin^2x\\ cos(2x)=cos^2x-(1-cos^2x)\\ cos(2x)=2cos^2x-1\\ ...\\ cos(4x)=cos^2(2x)-sin^2(2x)\\ cos(4x)=[cos^2x-sin^2x]^2 -[2sinxcosx]^2\\ cos(4x) =[cos^2x-(1-cos^2x)]^2 -[4sin^2xcos^2x]\\ cos(4x) =[2cos^2x-1]^2 -[4(1-cos^2x)cos^2x]\\ cos(4x) =[4cos^4x-4cos^2x+1] -[4cos^2x-4cos^4x]\\ cos(4x) =4cos^4x-4cos^2x+1-4cos^2x+4cos^4x\\ cos(4x) =8cos^4x-8cos^2x+1\\ ...\\ cos(2x)(cos4x)=(2cos^2x-1)(8cos^4x-8cos^2x+1)\\ cos(2x)(cos4x)=2cos^2x(8cos^4x-8cos^2x+1)-1(8cos^4x-8cos^2x+1)\\ cos(2x)(cos4x)=6cos^6x-16cos^4x+2cos^2x-8cos^4x+8cos^2x-1\\ cos(2x)(cos4x)=6cos^6x-24cos^4x+10cos^2x-1\\ \)

 

That is if I did not make any careless mistakes.    frown

Melody  Nov 9, 2015
 #2
avatar+42 
+5

Using one of the many trig identities:

\(cos(u)cos(v) = \frac{1}{2}[cos(u-v)+cos(u+v)]\\cos(2x)cos(4x) = \frac{1}{2}[cos(-2x)+cos(6x)]\)

Maximillian  Nov 9, 2015
edited by Maximillian  Nov 9, 2015
edited by Maximillian  Nov 9, 2015

13 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.