+0  
 
0
715
2
avatar

cos x = 0.08696

 Jul 7, 2014

Best Answer 

 #2
avatar+129852 
+5

We need to use the cosine inverse to find the angle...

acos(.08696) = 85.011257976987°......Note that the cosine is positive in the 4th quadrant as well, so the angle might also be 360° - 85.011257976987° = 274.988742023013° 

 

 

   

 Jul 7, 2014
 #1
avatar+1006 
+5

Do an inverse cosine function.

 

cos x = 0.08696 goes to (acos(0.08696))= x

 

Plug (acos(0.08696))^-1 into a calculator

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}^{\!\!\mathtt{-1}}{\left({\mathtt{0.086\: \!96}}\right)} = {\mathtt{85.011\: \!257\: \!976\: \!987^{\circ}}}$$

 

x = 85.011 deg.

 Jul 7, 2014
 #2
avatar+129852 
+5
Best Answer

We need to use the cosine inverse to find the angle...

acos(.08696) = 85.011257976987°......Note that the cosine is positive in the 4th quadrant as well, so the angle might also be 360° - 85.011257976987° = 274.988742023013° 

 

 

   

CPhill Jul 7, 2014

0 Online Users