+0  
 
0
196
2
avatar

COS(X)= -0.75. Estimate to the nearest hundredths if (X) is greater than or equal to 0* and less than 360*. ((*) = degrees)

Guest Feb 16, 2017

Best Answer 

 #2
avatar+19653 
+10

COS(X)= -0.75.

Estimate to the nearest hundredths if (X) is greater than or equal to 0* and less than 360*. ((*) = degrees)

 

\(0 \le x \le 360^{\circ}\)

 

\(\begin{array}{|rcll|} \hline \cos(x) &=& -0.75 \quad & | \quad \pm \arccos() \\ x &=& \pm \arccos(-0.75) \\ x &=& \pm 138.590377891^\circ \pm k \cdot 360^\circ\\ x_1 &=& 138.590377891^\circ \pm k \cdot 360^\circ \quad & k \in N \quad k= 0,1,2,3,\dots \\ \mathbf{x_1} &\mathbf{=}&\mathbf{ 138.590377891^\circ } \quad & 0 \le x \le 360^{\circ} \\\\ x_2 &=& -138.590377891^\circ \pm k \cdot 360^\circ \quad & k \in N \quad k= 0,1,2,3,\dots \\ x_2 &=& -138.590377891^\circ + 360^\circ \\ \mathbf{x_2} &\mathbf{=}&\mathbf{221.409622109^\circ } \quad & 0 \le x \le 360^{\circ} \\ \hline \end{array} \)

 

laugh

heureka  Feb 17, 2017
 #1
avatar
0

COS(X)= -0.75

X =138.59 degrees.

Guest Feb 16, 2017
 #2
avatar+19653 
+10
Best Answer

COS(X)= -0.75.

Estimate to the nearest hundredths if (X) is greater than or equal to 0* and less than 360*. ((*) = degrees)

 

\(0 \le x \le 360^{\circ}\)

 

\(\begin{array}{|rcll|} \hline \cos(x) &=& -0.75 \quad & | \quad \pm \arccos() \\ x &=& \pm \arccos(-0.75) \\ x &=& \pm 138.590377891^\circ \pm k \cdot 360^\circ\\ x_1 &=& 138.590377891^\circ \pm k \cdot 360^\circ \quad & k \in N \quad k= 0,1,2,3,\dots \\ \mathbf{x_1} &\mathbf{=}&\mathbf{ 138.590377891^\circ } \quad & 0 \le x \le 360^{\circ} \\\\ x_2 &=& -138.590377891^\circ \pm k \cdot 360^\circ \quad & k \in N \quad k= 0,1,2,3,\dots \\ x_2 &=& -138.590377891^\circ + 360^\circ \\ \mathbf{x_2} &\mathbf{=}&\mathbf{221.409622109^\circ } \quad & 0 \le x \le 360^{\circ} \\ \hline \end{array} \)

 

laugh

heureka  Feb 17, 2017

6 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.