Since cos(2θ) = 2cos2(θ) - 1,
cos(2θ) + 2cos(θ) + 1 = 0
---> 2cos2(θ) - 1 + 2cos(θ) + 1 = 0
2cos2(θ) + 2cos(θ) = 0
cos2(θ) + cos(θ) = 0
cos(θ)(cos(θ) + 1) = 0
Either cos(θ) = 0 or cos(θ) + 1 = 0 ---> cos(θ) = -1
θ = cos-1(0) or θ = cos-1(-1)
So: θ = 90° or 270° or 180° (and all 360° increments of these values)