what values of x give cosh (x) =0 ?
cosh(x)=ex+e−x2=0ex+e−x2=0ex+e−x=0ex+1ex=0|⋅exe2x+1=0| Euler's identity: eiπ+1=0 e2x+1=eiπ+1e2x=eiπ2x=iπx=iπ2
There aren't any Real values for x that satisfy this equality:
The following Imaginary numbers satisfy it: i(2n-1)*pi/2 where n is an integer.
All Solutions for x:
cosh(x)=ex+e−x2=0ex+e−x2=0ex+e−x=0ex+1ex=0|⋅exe2x+1=0| Euler's identity: eiπ+1=0 e2x+1=ei(π±2kπ)+1e2x=ei(π±2kπ)2x=i(π±2kπ)x=i(π±2kπ)2x=iπ2±kπik∈N|iπ2−πi=−iπ2x=−iπ2±kπik∈N