+0  
 
0
51
1
avatar

Nine stones are arranged in a straight line. They are counted from left to right as 1, 2, ..., 9, and then from right to left, so that the stone previously counted as 8 is counted as 10. The pattern is continued to the left until the stone previously counted as 1 is counted as 17. The pattern then reverses so that the stone originally counted as 2 is counted as 18, 3 as 19, and so on. The counting continues in this manner. Which of the original stones is counted as 999? Express your answer as a single digit which corresponds to the first digit assigned to that stone.

 Nov 21, 2021
 #1
avatar
0

999 mod (9 - 1) ==7 - the 999 count would start from 1 to the left as number 993 (1), 994 (2), 995 (3), 996 (4), 997 (5), 998 (6) and 999 (7).

 Nov 21, 2021

16 Online Users