Here's an old one that I ran across the other day.....I still think it's a nice problem.....
As seen below, a line is tangent to the parabola y = x^2 at C
At the same time, a line with the same slope cuts the parabola at AB
Your mission, should you decide to accept it, is to prove that the area ADCBA [ the area between the segment AB and the "bottom" part of the parabola ] is 4/3 that of the area of triangle ABC.........Good Luck....!!!!
Here's an old one that I ran across the other day.....I still think it's a nice problem.....
As seen below, a line is tangent to the parabola y = x^2 at C
At the same time, a line with the same slope cuts the parabola at AB
Your mission, should you decide to accept it, is to prove that the area ADCBA [ the area between the segment AB and the "bottom" part of the parabola ] is 4/3 that of the area of triangle ABC.........Good Luck....!!!!
We have:
parabola:y=x2y′=2xline ¯AB:y=m⋅x+b→A=(xaya)=(xax2a)→B=(xbyb)=(xbx2b)→C=(xcyc)=(xcx2c)
1. Area of triangle ABC
2Atriangle=2At=|(→C−→A)×(→B−→A)|=|(xc−xax2c−x2a)×(xb−xax2b−x2a)|=(xc−xa)(x2b−x2a)−(x2c−x2a)(xb−xa)=(xc−xa)(xb−xa)(xb+xa)−(xc−xa)(xc+xa)(xb−xa)=(xc−xa)(xb−xa)[(xb+xa)−(xc+xa)]=(xc−xa)(xb−xa)(xb+xa−xc−xa)2At=(xc−xa)(xb−xa)(xb−xc)
slope of the line ¯AB:2xc=m=yb−yaxb−xa=x2b−x2axb−xa=(xb−xa)(xb+xa)xb−xa=xb+xa2xc=m=xb+xa2xc=xb+xa xc=xb+xa2 xc−xa=xb+xa2−xa=xb−xa2xb−xc=xb−xb+xa2=xb−xa22At=(xc−xa)(xb−xa)(xb−xc)|xc−xa=xb−xc=xb−xa22At=(xb−xa2)(xb−xa)(xb−xa2)2At=14⋅(xb−xa)3 At=18⋅(xb−xa)3
2. Area of Parabola(Button) ADCBA
Aparabola=Ap=xb∫xa(mx+b) dx−xb∫xax2 dx=mxb∫xax dx+bxb∫xadx−xb∫xax2 dx=m2[x2]xbxa+b[x]xbxa−13[x3]xbxaAp=m2(x2b−x2a)+b(xb−xa)−13(x3b−x3a) (a−b)3=a3−3a2b+3ab2−b3a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)[(a−b)2+3ab]a3−b3=(a−b)[a2−2ab+b2+3ab]a3−b3=(a−b)[a2+ab+b2] x3b−x3a=(xb−xa)(x2b+xbxa+x2a)Ap=m2(xb−xa)(xb+xa)+b(xb−xa)−13(xb−xa)(x2b+xbxa+x2a)Ap=(xb−xa)[m2(xb+xa)+b−13(x2b+xbxa+x2a)]line :y=mx+bm= ?b= ? y−yax−xa=yb−yaxb−xay−ya=(x−xa)yb−yaxb−xay=(x−xa)yb−yaxb−xa+yayb=x2bya=x2ay=(x−xa)x2b−x2axb−xa+x2ay=(x−xa)(xb−xa)(xb+xa)xb−xa+x2ay=(x−xa)(xb+xa)+x2ay=x(xb+xa)−xa(xb+xa)+x2ay=x(xb+xa)−xaxb−x2a+x2ay=x(xb+xa)⏟=m −xaxb⏟=b m=xb+xab=−xaxbAp=(xb−xa)[xb+xa2(xb+xa)−xaxb−13(x2b+xbxa+x2a)]|⋅66Ap=16(xb−xa)[3(xb+xa)2−6xaxb−2(x2b+xbxa+x2a)]Ap=16(xb−xa)(3x2b+6xbxa+3x2a−6xaxb−2x2b−2xbxa−2x2a)Ap=16(xb−xa)(x2b−2xbxa+x2a)Ap=16(xb−xa)(xb−xa)2 Ap=16(xb−xa)3
3. Ratio AtAp
AtAp=18⋅(xb−xa)316(xb−xa)3AtAp=18⋅61AtAp=68AtAp=34
Omi67 's answer
http://web2.0calc.com/questions/the-solution-way-with-an-example/new#edit
(not general so Chris did not accept it )
I liked it!
Here's an old one that I ran across the other day.....I still think it's a nice problem.....
As seen below, a line is tangent to the parabola y = x^2 at C
At the same time, a line with the same slope cuts the parabola at AB
Your mission, should you decide to accept it, is to prove that the area ADCBA [ the area between the segment AB and the "bottom" part of the parabola ] is 4/3 that of the area of triangle ABC.........Good Luck....!!!!
We have:
parabola:y=x2y′=2xline ¯AB:y=m⋅x+b→A=(xaya)=(xax2a)→B=(xbyb)=(xbx2b)→C=(xcyc)=(xcx2c)
1. Area of triangle ABC
2Atriangle=2At=|(→C−→A)×(→B−→A)|=|(xc−xax2c−x2a)×(xb−xax2b−x2a)|=(xc−xa)(x2b−x2a)−(x2c−x2a)(xb−xa)=(xc−xa)(xb−xa)(xb+xa)−(xc−xa)(xc+xa)(xb−xa)=(xc−xa)(xb−xa)[(xb+xa)−(xc+xa)]=(xc−xa)(xb−xa)(xb+xa−xc−xa)2At=(xc−xa)(xb−xa)(xb−xc)
slope of the line ¯AB:2xc=m=yb−yaxb−xa=x2b−x2axb−xa=(xb−xa)(xb+xa)xb−xa=xb+xa2xc=m=xb+xa2xc=xb+xa xc=xb+xa2 xc−xa=xb+xa2−xa=xb−xa2xb−xc=xb−xb+xa2=xb−xa22At=(xc−xa)(xb−xa)(xb−xc)|xc−xa=xb−xc=xb−xa22At=(xb−xa2)(xb−xa)(xb−xa2)2At=14⋅(xb−xa)3 At=18⋅(xb−xa)3
2. Area of Parabola(Button) ADCBA
Aparabola=Ap=xb∫xa(mx+b) dx−xb∫xax2 dx=mxb∫xax dx+bxb∫xadx−xb∫xax2 dx=m2[x2]xbxa+b[x]xbxa−13[x3]xbxaAp=m2(x2b−x2a)+b(xb−xa)−13(x3b−x3a) (a−b)3=a3−3a2b+3ab2−b3a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)[(a−b)2+3ab]a3−b3=(a−b)[a2−2ab+b2+3ab]a3−b3=(a−b)[a2+ab+b2] x3b−x3a=(xb−xa)(x2b+xbxa+x2a)Ap=m2(xb−xa)(xb+xa)+b(xb−xa)−13(xb−xa)(x2b+xbxa+x2a)Ap=(xb−xa)[m2(xb+xa)+b−13(x2b+xbxa+x2a)]line :y=mx+bm= ?b= ? y−yax−xa=yb−yaxb−xay−ya=(x−xa)yb−yaxb−xay=(x−xa)yb−yaxb−xa+yayb=x2bya=x2ay=(x−xa)x2b−x2axb−xa+x2ay=(x−xa)(xb−xa)(xb+xa)xb−xa+x2ay=(x−xa)(xb+xa)+x2ay=x(xb+xa)−xa(xb+xa)+x2ay=x(xb+xa)−xaxb−x2a+x2ay=x(xb+xa)⏟=m −xaxb⏟=b m=xb+xab=−xaxbAp=(xb−xa)[xb+xa2(xb+xa)−xaxb−13(x2b+xbxa+x2a)]|⋅66Ap=16(xb−xa)[3(xb+xa)2−6xaxb−2(x2b+xbxa+x2a)]Ap=16(xb−xa)(3x2b+6xbxa+3x2a−6xaxb−2x2b−2xbxa−2x2a)Ap=16(xb−xa)(x2b−2xbxa+x2a)Ap=16(xb−xa)(xb−xa)2 Ap=16(xb−xa)3
3. Ratio AtAp
AtAp=18⋅(xb−xa)316(xb−xa)3AtAp=18⋅61AtAp=68AtAp=34
Very nice, heureka...I re-worked this one the other day....I did something similar with the integration part, but, for the area of the triangle, I found the length of the base and then used the "formula" for finding the distance from a point not on a line [in this case, C] to the line segment AB to find the altitude of the triangle......
There are probably several other methods to solving this.......I actually found it in a different way a long time ago, but, now........I don't remember exactly what I did.....LOL!!!!!
Good job....!!!....5 points from me.....!!!!