+0  
 
+1
36
3
avatar+800 

What are the possible values for f'(x) if f'(x) exists and for f(x1) > f(x2) every x1>x2? 

 

a) f'(x) < 0 

b) f'(x) >0 

c) f'(x) = 0 

d) f'(x) ≥ 0 

 

Sorry, these really confused me :| 

Julius  Apr 11, 2018

Best Answer 

 #1
avatar+12227 
+2

If x1 > x2     AND  f(x1) > f(x2)     this describes a function with a  POSITIVE slope  (  f' (x)  )

 

So f'(x) > 0

ElectricPavlov  Apr 11, 2018
Sort: 

3+0 Answers

 #1
avatar+12227 
+2
Best Answer

If x1 > x2     AND  f(x1) > f(x2)     this describes a function with a  POSITIVE slope  (  f' (x)  )

 

So f'(x) > 0

ElectricPavlov  Apr 11, 2018
 #2
avatar
+2

The answer is D, not A-

 

If f(x)=x3, f'(0)=0 but f is strictly increasing.

Guest Apr 12, 2018
 #3
avatar
+1

So is my answer the correct answer?

Guest Apr 12, 2018

15 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details