We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
244
3
avatar+956 

What are the possible values for f'(x) if f'(x) exists and for f(x1) > f(x2) every x1>x2? 

 

a) f'(x) < 0 

b) f'(x) >0 

c) f'(x) = 0 

d) f'(x) ≥ 0 

 

Sorry, these really confused me :| 

 Apr 11, 2018

Best Answer 

 #1
avatar+18360 
+2

If x1 > x2     AND  f(x1) > f(x2)     this describes a function with a  POSITIVE slope  (  f' (x)  )

 

So f'(x) > 0

 Apr 11, 2018
 #1
avatar+18360 
+2
Best Answer

If x1 > x2     AND  f(x1) > f(x2)     this describes a function with a  POSITIVE slope  (  f' (x)  )

 

So f'(x) > 0

ElectricPavlov Apr 11, 2018
 #2
avatar
+2

The answer is D, not A-

 

If f(x)=x3, f'(0)=0 but f is strictly increasing.

 Apr 12, 2018
 #3
avatar
+1

So is my answer the correct answer?

Guest Apr 12, 2018

5 Online Users