+0  
 
+1
156
3
avatar+956 

What are the possible values for f'(x) if f'(x) exists and for f(x1) > f(x2) every x1>x2? 

 

a) f'(x) < 0 

b) f'(x) >0 

c) f'(x) = 0 

d) f'(x) ≥ 0 

 

Sorry, these really confused me :| 

Julius  Apr 11, 2018

Best Answer 

 #1
avatar+14412 
+2

If x1 > x2     AND  f(x1) > f(x2)     this describes a function with a  POSITIVE slope  (  f' (x)  )

 

So f'(x) > 0

ElectricPavlov  Apr 11, 2018
 #1
avatar+14412 
+2
Best Answer

If x1 > x2     AND  f(x1) > f(x2)     this describes a function with a  POSITIVE slope  (  f' (x)  )

 

So f'(x) > 0

ElectricPavlov  Apr 11, 2018
 #2
avatar
+2

The answer is D, not A-

 

If f(x)=x3, f'(0)=0 but f is strictly increasing.

Guest Apr 12, 2018
 #3
avatar
+1

So is my answer the correct answer?

Guest Apr 12, 2018

30 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.