We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
170
1
avatar+1044 

Consider the \(12\) sided polygon \(ABCDEFGHIJKL\) below, Each of its sides has the length of \(4 \), and each consecutive sides form a right angle. What is the area of \(ABCM\) ?

 

 

 Feb 9, 2019
 #1
avatar+103049 
+2

Maybe easier ways to do this....but....

 

Let H =   (0, 0)     A = (0, 12)   C = (4, 8)    and  G = (4, 0)

 

The slope of the line containing  AG   =  [ -12/4] = -3

And the equation of the line on which AG lies is   y = -3x + 12   (1)

 

The slope of the line containing HC is  8/4 = 2

And the equation of the line on which HC lies is   y = 2x   (2)

 

So....setting (1) = (2) to find the x coordinate of M, we have that

 

-3x + 12 = 2x

12 = 5x

12/5 = x

And y = 2(12/5)  = 24/5

 

Connecting LC  and calling the intersection of LC and  AG   =  N

 

Using similar triangles

Triangle ALN is similar to triangle AHG

So LN /AL = HG / AH

LN /4 = 4 / 12

LN /4 = 1/3

LN = 4/3

So.....NC is the base of trapezoid ABCN  = LC - LN =  4 - 4/3  = 8/3.....and the area of this trapezoid is

(1/2)BC ( AB + NC) =   (1/2)(4)(4 + 8/3)  = 2 ( 20/3) = 40/3 units^2      (3)

 

And triangle NCM  has a base of NC =  11/3   and a height of  8 - 24/5 =  16/5

So...the area of this triangle is  (1/2)(11/3)(16/5) =  88/15  units^2    (4)

 

So...[ ABCM ]   =   (3) + (4)   =   [ 40/3 + 88/15 ]  =  [288/15] units^2   =  19.2 units^2

 

 

cool cool cool

 Feb 9, 2019

31 Online Users

avatar
avatar
avatar
avatar
avatar