+0  
 
0
7
1
avatar+964 

Express 0.\overline{2123} as a base 10 fraction in reduced form.

 Jun 14, 2024

Best Answer 

 #1
avatar+1926 
0

In order to do this, we can set some variables.

Let's set \(x=0.\overline{2123}\)

 

If x is equal to that, then notice that \(10000 x = 2123.\overline{2123}\)

 

This is very important to the problem. 

 

Subtracting x from 10000x, we get

\(\eqalign{10000 X &= &\hfill2123.2123...\cr X &= &\hfill0.2123...\cr \hline 9999X &= &2123\cr}\)

 

Notice that the repeating decimal cancels out. 

 

Now, we solve for x. We get

\(X = \frac{2123}{9999}\\X = \frac{193}{909}\)

 

So our final answer is \(\frac{193}{909}\)

 

Thanks! :)

 Jun 14, 2024
 #1
avatar+1926 
0
Best Answer

In order to do this, we can set some variables.

Let's set \(x=0.\overline{2123}\)

 

If x is equal to that, then notice that \(10000 x = 2123.\overline{2123}\)

 

This is very important to the problem. 

 

Subtracting x from 10000x, we get

\(\eqalign{10000 X &= &\hfill2123.2123...\cr X &= &\hfill0.2123...\cr \hline 9999X &= &2123\cr}\)

 

Notice that the repeating decimal cancels out. 

 

Now, we solve for x. We get

\(X = \frac{2123}{9999}\\X = \frac{193}{909}\)

 

So our final answer is \(\frac{193}{909}\)

 

Thanks! :)

NotThatSmart Jun 14, 2024

0 Online Users