+0  
 
0
633
1
avatar

Solve for K Wt=Wi*e^-kt

 Dec 15, 2015

Best Answer 

 #1
avatar+26400 
+5

Solve for K Wt=Wi*e^-kt

 

I assume: \(W(t) = W(i) \cdot e^{-kt}\)

 

\(\begin{array}{rcll} W(t) &=& W(i) \cdot e^{-kt} \qquad &| \qquad : W(i) \\ \frac{W(t)}{ W(i) } &=& e^{-kt} \qquad &| \qquad \ln{} \\ \ln{ (\frac{W(t)}{ W(i) }) } &=& \ln{ (e^{-kt}) } \\ \ln{ (W(t)) }-\ln{ (W(i)) } &=& -kt\cdot \ln{ (e ) } \qquad &| \qquad \ln{(e)} = 1 \\ \ln{ (W(t)) }-\ln{ (W(i)) } &=& -kt \qquad &| \qquad \cdot(-1) \\ -\ln{ (W(t)) }+\ln{ (W(i)) } &=& kt \\ kt &=& -\ln{ (W(t)) }+\ln{ (W(i)) }\\ kt &=& \ln{ (W(i)) } - \ln{ (W(t)) } \qquad &| \qquad : t \\ \mathbf{k} &\mathbf{=}& \mathbf{\frac{\ln{ (W(i)) } - \ln{ (W(t)) }}{t} } \\ \end{array}\)

 

laugh

 Dec 15, 2015
 #1
avatar+26400 
+5
Best Answer

Solve for K Wt=Wi*e^-kt

 

I assume: \(W(t) = W(i) \cdot e^{-kt}\)

 

\(\begin{array}{rcll} W(t) &=& W(i) \cdot e^{-kt} \qquad &| \qquad : W(i) \\ \frac{W(t)}{ W(i) } &=& e^{-kt} \qquad &| \qquad \ln{} \\ \ln{ (\frac{W(t)}{ W(i) }) } &=& \ln{ (e^{-kt}) } \\ \ln{ (W(t)) }-\ln{ (W(i)) } &=& -kt\cdot \ln{ (e ) } \qquad &| \qquad \ln{(e)} = 1 \\ \ln{ (W(t)) }-\ln{ (W(i)) } &=& -kt \qquad &| \qquad \cdot(-1) \\ -\ln{ (W(t)) }+\ln{ (W(i)) } &=& kt \\ kt &=& -\ln{ (W(t)) }+\ln{ (W(i)) }\\ kt &=& \ln{ (W(i)) } - \ln{ (W(t)) } \qquad &| \qquad : t \\ \mathbf{k} &\mathbf{=}& \mathbf{\frac{\ln{ (W(i)) } - \ln{ (W(t)) }}{t} } \\ \end{array}\)

 

laugh

heureka Dec 15, 2015

3 Online Users

avatar