Define g(x) as follows: g(x)={−1,if x<0,0,if x=0,1,if x>0.Let f(x)=g(x+1)−g(x−1). Compute f(12)+f(−12).
f(x) = g(x+1)−g(x−1) f(12) = g(12+1)−g(12−1) f(12) = g(32)−g(−12) f(12) = 1−−1 f(12) = 2 f(−12) = g(−12+1)−g(−12−1) f(−12) = g(12)−g(−32) f(−12) = 1−−1 f(−12) = 2 f(12)+f(−12) = 2+2 = 4
.