+0

# Define variables and write an equation to model the relationship in each table

0
393
1

23. Number of tickets.    Total Cost

2.                            \$7.

4.                            \$14

6.                            \$21

24.  Number of hours.         Distance traveled

1.                                    55 miles

3.                                  165 miles

5.                                  275 miles

25.    Number of hours.     Total pay

8.                           \$40

12.                         \$60

16.                         \$80

26.   Total cost.      Change from \$10

\$10.00.                    \$0

\$9.00.                      \$1.00

\$7.50.                      \$2.50

27.    Number of days.    Length

1.                      0.45 inches

4.                      1.80 inches

8.                      3.60 inches

28.   Miles traveled.    Miles remaining

0.                           500

125.                         375

350.                         150

Aug 19, 2017
edited by Guest  Aug 19, 2017

#1
+2

23. Number of tickets.    Total Cost

2.                            \$7.

4.                            \$14

6.                            \$21

These are all pretty much the same type of linear problem .......let x be the Number of Tickets and y be the Total Cost

Note that  as y changes by \$7, x changes by 2.....so...the slope of our line  = 7/2

And letting one point  be  (2, 7)....we have the following equation :

y = (7/2)(x - 2) + 7

24, 25  and 27 are similar to 23

26.   Total cost.      Change from \$10

\$10.00.                    \$0

\$9.00.                      \$1.00

\$7.50.                      \$2.50

This one is a little tricky......let the Change from \$10 be y  and the Total Cost  = x

The function  that models this  is :  y  = 10 - x

28.   Miles traveled.    Miles remaining

0.                           500

125.                         375

350.                         150

Let the Miles Remaining be  y and the  Miles Traveled

This is similar to 26.....the function that models this is   y = 500 - x   Aug 19, 2017