+0  
 
+5
459
6
avatar+122 

\(f'(x)=(x-2)/\sqrt{x} \)

How do I get the answer x+2/2xsqrtx ? 

Namodesto  Dec 1, 2015

Best Answer 

 #4
avatar+92805 
+10

Ok  Namodesto

I have made some changes to the original post, let me know how you get on.

 

Why did I divide by x:

I used the quotient rule.  The denominator of the quotient rule is v^2

v=sqrt{x}

v^2 = x

 

Anyway let me know if youdo or if you don't understand :))

Melody  Dec 2, 2015
 #1
avatar+92805 
+15

The question is not written properly Namodesto

 

It should be like this

 

\(f(x)=\frac{x+2}{\sqrt{x}}\\ \mbox{Use quotient rule}\\ \boxed{If\;\;y=\frac{u(x)}{v(x)}\;\;then\;\;y'=\frac{vu'-uv'}{v^2} }\\ u=x+2 \quad v=x^{0.5}\\ u'=1 \qquad v'=0.5v^{-0.5}=\frac{1}{2\sqrt2}\\ \)

 

 

 

\((1)\qquad f'(x)=\frac{\sqrt{x}-\frac{1}{2\sqrt{x}}(x-2)}{x}\\ (2)\qquad f'(x)=\left[\sqrt{x}-\frac{1}{2\sqrt{x}}(x-2)\right] \div x\\ (3) \qquad f'(x)=\left[\frac{\sqrt{x}}{1}-\frac{(x-2)}{2\sqrt{x}}\right] \div x\\ (4) \qquad f'(x)=\left[\frac{2\sqrt{x}}{2\sqrt{x}}*\frac{\sqrt{x}}{1}-\frac{(x-2)}{2\sqrt{x}}\right] \div x\\ (5) \qquad f'(x)=\left[\frac{2\sqrt{x}}{2\sqrt{x}}*\frac{\sqrt{x}}{1}-\frac{(x-2)}{2\sqrt{x}}\right] \div x\\ (6) \qquad f'(x)=\left[\frac{2\sqrt{x}\sqrt{x}}{2\sqrt{x}*1}-\frac{(x-2)}{2\sqrt{x}}\right] \times \frac{1}{x}\\(7) \qquad f'(x)=\left[\frac{2x}{2\sqrt{x}}-\frac{(x-2)}{2\sqrt{x}}\right] \times \frac{1}{x}\\ (8) \qquad f'(x)=\frac{2x-(x-2)}{2\sqrt{x}}\times \frac{1}{x}\\ (9) \qquad f'(x)=\frac{2x-(x-2)}{2x\sqrt{x}}\\ (10) \qquad f'(x)=\frac{x+2}{2x\sqrt{x}}\\\)

 

I have added lines to help you understand and I have put line numbers so you can tell me which bit you do not understand.

So let me know how you get on :)

Melody  Dec 2, 2015
edited by Melody  Dec 2, 2015
edited by Melody  Dec 2, 2015
 #2
avatar+122 
0

Hi Melody, 

 

thank you so much for your help, however I still don't understand how you got 2x. And also why do you divide by x? 

Namodesto  Dec 2, 2015
 #4
avatar+92805 
+10
Best Answer

Ok  Namodesto

I have made some changes to the original post, let me know how you get on.

 

Why did I divide by x:

I used the quotient rule.  The denominator of the quotient rule is v^2

v=sqrt{x}

v^2 = x

 

Anyway let me know if youdo or if you don't understand :))

Melody  Dec 2, 2015
 #5
avatar+122 
+5

Thank you Melody! I finally understand haha :) 

Namodesto  Dec 2, 2015
 #6
avatar+92805 
+5

That is great.  I am glad I could help :)

Melody  Dec 2, 2015

3 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.