+0  
 
0
214
1
avatar+31 

Let \(f(x) = 4\sqrt(x) - x\)

a) Find all points on the graph of f at which the tangent line is horizontal
b) Find all points on the graph of f at which the tangent line has slope -1/2

I kinda understood how the first one worked, but the second question threw me for a loop. How would I work through both?
Thanks guys

 Mar 13, 2018
 #1
avatar+98123 
+2

f(x)  = 4x^(1/2)   - x

 

f ' (x)   =  (1/2*4x^(-1/2)  - 1  =    2x^(-1/2)  - 1

 

The tangent line will be horizontal if  the slope  = 0

 

So.....set the derivative equal to 0 and solve for x

 

2x^(-1/2)  -  1  = 0

2x^(-1/2)  = 1 

x^(-1/2)  = 1/2

 

We can write this as

x^(1/2)  = 2        square both sides 

And  x  =  4

 

When  x  =  4 ,   y  = 4√4  - 4   =  8 - 4  =  4

So.....the point where the tangent line is horizontal is  (4,4)

 

 

 

To find where the slope is  -1/2....we have

 

2x^(-1/2)  -  1  = -1/2

2x^(-1/2)  =  1/2

x^(-1/2)  =  1/4

And we can write this as

 

x^(1/2)  =  4     square both sides

x  = 16 

When  x  = 16 ,   y  = 4√16  - 16   =  0

 

So....the point where the tangent line  = -1/2  = (16, 0 )

 

 

 

cool cool cool

 Mar 13, 2018

17 Online Users

avatar
avatar