+0  
 
0
980
1
avatar+1904 

Determine if the two equations are parallel, perpendicular, or the same line.  If, perpendicular, at what point does the two lines intersect?

 

\(2x+3y=-2\)

 

\(x+y=0\)

 Mar 16, 2016

Best Answer 

 #1
avatar+26393 
+30

Determine if the two equations are parallel, perpendicular, or the same line.  If, perpendicular, at what point does the two lines intersect?

 

\(\small{ \begin{array}{lrclll} (1) & 2x+3y = -2 \qquad \Rightarrow \qquad y &=& -\frac23 x - \frac23 & m_1 = -\frac23 & b_1 = -\frac23 \\ (2) & x+y= 0 \qquad \Rightarrow \qquad y &=& -x & m_2 = -1 & b_2 = 0 \\ \end{array} }\)

 

 

1. Parallel ?

Parallel, if  \(\small{m_1 = m_2 \text{ and } b_1 \ne b_2}\)

 

We have: \(\small{m_1 \ne m_2 \qquad -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}parallel~ no} \)

 

2. The same line ?

The same line, if  \(\small{m_1 = m_2 \text{ and } b_1 = b_2}\) 

 

We have:

\(\small{m_1 \ne m_2 \qquad  -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\)\(\small{b_1 \ne b_2 \qquad  -\frac23 \ne 0 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\) 

 

 

3. Perpendicular ?  

Perpendicular, if  \(\small{m_1 = -\frac{1}{m_2}}\)  

 

We have: \(\small{m_1 \ne -\frac{1}{m_2} \qquad  -\frac23 \ne -\frac{1}{-1} } \qquad \Rightarrow {\color{red}perpendicular~ no}\)

 

 

 

laugh

 Mar 16, 2016
edited by heureka  Mar 16, 2016
edited by heureka  Mar 16, 2016
 #1
avatar+26393 
+30
Best Answer

Determine if the two equations are parallel, perpendicular, or the same line.  If, perpendicular, at what point does the two lines intersect?

 

\(\small{ \begin{array}{lrclll} (1) & 2x+3y = -2 \qquad \Rightarrow \qquad y &=& -\frac23 x - \frac23 & m_1 = -\frac23 & b_1 = -\frac23 \\ (2) & x+y= 0 \qquad \Rightarrow \qquad y &=& -x & m_2 = -1 & b_2 = 0 \\ \end{array} }\)

 

 

1. Parallel ?

Parallel, if  \(\small{m_1 = m_2 \text{ and } b_1 \ne b_2}\)

 

We have: \(\small{m_1 \ne m_2 \qquad -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}parallel~ no} \)

 

2. The same line ?

The same line, if  \(\small{m_1 = m_2 \text{ and } b_1 = b_2}\) 

 

We have:

\(\small{m_1 \ne m_2 \qquad  -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\)\(\small{b_1 \ne b_2 \qquad  -\frac23 \ne 0 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\) 

 

 

3. Perpendicular ?  

Perpendicular, if  \(\small{m_1 = -\frac{1}{m_2}}\)  

 

We have: \(\small{m_1 \ne -\frac{1}{m_2} \qquad  -\frac23 \ne -\frac{1}{-1} } \qquad \Rightarrow {\color{red}perpendicular~ no}\)

 

 

 

laugh

heureka Mar 16, 2016
edited by heureka  Mar 16, 2016
edited by heureka  Mar 16, 2016

1 Online Users

avatar