Determine if the two equations are parallel, perpendicular, or the same line. If, perpendicular, at what point does the two lines intersect?
\(2x+3y=-2\)
\(x+y=0\)
Determine if the two equations are parallel, perpendicular, or the same line. If, perpendicular, at what point does the two lines intersect?
\(\small{ \begin{array}{lrclll} (1) & 2x+3y = -2 \qquad \Rightarrow \qquad y &=& -\frac23 x - \frac23 & m_1 = -\frac23 & b_1 = -\frac23 \\ (2) & x+y= 0 \qquad \Rightarrow \qquad y &=& -x & m_2 = -1 & b_2 = 0 \\ \end{array} }\)
1. Parallel ?
Parallel, if \(\small{m_1 = m_2 \text{ and } b_1 \ne b_2}\)
We have: \(\small{m_1 \ne m_2 \qquad -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}parallel~ no} \)
2. The same line ?
The same line, if \(\small{m_1 = m_2 \text{ and } b_1 = b_2}\)
We have:
\(\small{m_1 \ne m_2 \qquad -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\)\(\small{b_1 \ne b_2 \qquad -\frac23 \ne 0 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\)
3. Perpendicular ?
Perpendicular, if \(\small{m_1 = -\frac{1}{m_2}}\)
We have: \(\small{m_1 \ne -\frac{1}{m_2} \qquad -\frac23 \ne -\frac{1}{-1} } \qquad \Rightarrow {\color{red}perpendicular~ no}\)
Determine if the two equations are parallel, perpendicular, or the same line. If, perpendicular, at what point does the two lines intersect?
\(\small{ \begin{array}{lrclll} (1) & 2x+3y = -2 \qquad \Rightarrow \qquad y &=& -\frac23 x - \frac23 & m_1 = -\frac23 & b_1 = -\frac23 \\ (2) & x+y= 0 \qquad \Rightarrow \qquad y &=& -x & m_2 = -1 & b_2 = 0 \\ \end{array} }\)
1. Parallel ?
Parallel, if \(\small{m_1 = m_2 \text{ and } b_1 \ne b_2}\)
We have: \(\small{m_1 \ne m_2 \qquad -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}parallel~ no} \)
2. The same line ?
The same line, if \(\small{m_1 = m_2 \text{ and } b_1 = b_2}\)
We have:
\(\small{m_1 \ne m_2 \qquad -\frac23 \ne -1 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\)\(\small{b_1 \ne b_2 \qquad -\frac23 \ne 0 } \qquad \Rightarrow {\color{red}the~ same~ line~ no}\)
3. Perpendicular ?
Perpendicular, if \(\small{m_1 = -\frac{1}{m_2}}\)
We have: \(\small{m_1 \ne -\frac{1}{m_2} \qquad -\frac23 \ne -\frac{1}{-1} } \qquad \Rightarrow {\color{red}perpendicular~ no}\)