determine the following lines are parrallel ? x-y+1=0 6x-6y+7=0
$$\boxed{ \textcolor[rgb]{1,0,0}{a} *x + \textcolor[rgb]{0,0,1}{b} *y + c = 0 \qquad m = -\frac{ \textcolor[rgb]{1,0,0}{a} }{ \textcolor[rgb]{0,0,1}{b} } } \\$$
$$\\ \textcolor[rgb]{1,0,0}{1} *x \textcolor[rgb]{0,0,1}{-1} *y +1 = 0 \qquad m = -\frac{ \textcolor[rgb]{1,0,0}{1} }{ \textcolor[rgb]{0,0,1}{(-1)} } = 1
\\
\\
\textcolor[rgb]{1,0,0}{6} *x \textcolor[rgb]{0,0,1}{-6} *y +7 = 0 \qquad m = -\frac{ \textcolor[rgb]{1,0,0}{6} }{ \textcolor[rgb]{0,0,1}{(-6)} } = 1 \\$$
The lines are parrallel because m is equal.
Parallel lines have the same slope..let's put both equations in the form y = mx + b, where "m" is the slope of the line......so we have
x-y+1=0 → y = x + 1
6x-6y+7=0 → 6y = 6x + 7 → y = x + 7/6
And since the coefficient in front of both "x's" in the two equations is the same (an understood "1" )...the slopes are the same ....thus....they are parallel...
determine the following lines are parrallel ? x-y+1=0 6x-6y+7=0
$$\boxed{ \textcolor[rgb]{1,0,0}{a} *x + \textcolor[rgb]{0,0,1}{b} *y + c = 0 \qquad m = -\frac{ \textcolor[rgb]{1,0,0}{a} }{ \textcolor[rgb]{0,0,1}{b} } } \\$$
$$\\ \textcolor[rgb]{1,0,0}{1} *x \textcolor[rgb]{0,0,1}{-1} *y +1 = 0 \qquad m = -\frac{ \textcolor[rgb]{1,0,0}{1} }{ \textcolor[rgb]{0,0,1}{(-1)} } = 1
\\
\\
\textcolor[rgb]{1,0,0}{6} *x \textcolor[rgb]{0,0,1}{-6} *y +7 = 0 \qquad m = -\frac{ \textcolor[rgb]{1,0,0}{6} }{ \textcolor[rgb]{0,0,1}{(-6)} } = 1 \\$$
The lines are parrallel because m is equal.