We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
210
2
avatar

Determine the set of all complex numbers Z for which Z, 1/Z, 1-Z have the same modules.

 Sep 19, 2018
 #1
avatar+5226 
+1

the word is modulus

 

\(|Z| = \left | \dfrac 1 Z \right | = | 1 - Z |\)

 

first off you should know that

 

 \(\left | \dfrac 1 Z \right | = \dfrac {1}{| Z |} \\ \\ \text{so } |Z| = \left|\dfrac 1 Z \right| \Rightarrow |Z|=1\)

 

\(|1-Z|=1 \\ \\ \sqrt{(1-Z)(1-Z^*)} = 1 \\ \\ (1-Z)(1-Z^*)=1 \\ \\ 1 -Z -Z^* + Z Z^* = 1\)

 

\(\text{but }Z Z^* = |Z|^2 = 1 \text{ so} \\ 1-Z-Z^* + 1 = 1 \\ Z+Z^* = 1 \\ 2 Re(Z) = 1 \\ Re(Z) = \dfrac 1 2\)

 

\(1 = 1^2 = |Z|^2 = Re(Z)^2 + Im(Z)^2 = \left(\dfrac 1 2\right)^2 + Im(Z)^2 \\ \\ Im(Z)^2 = \dfrac 3 4 \\ \\ Im(Z) = \pm \dfrac{\sqrt{3}}{2} \\ \\ Z = \dfrac 1 2 (1 \pm i\sqrt{3})\)

.
 Sep 19, 2018
 #2
avatar
+1

Thank you.

Guest Sep 20, 2018

8 Online Users

avatar