+0  
 
0
94
2
avatar

Determine the set of all complex numbers Z for which Z, 1/Z, 1-Z have the same modules.

Guest Sep 19, 2018
 #1
avatar+3187 
+1

the word is modulus

 

\(|Z| = \left | \dfrac 1 Z \right | = | 1 - Z |\)

 

first off you should know that

 

 \(\left | \dfrac 1 Z \right | = \dfrac {1}{| Z |} \\ \\ \text{so } |Z| = \left|\dfrac 1 Z \right| \Rightarrow |Z|=1\)

 

\(|1-Z|=1 \\ \\ \sqrt{(1-Z)(1-Z^*)} = 1 \\ \\ (1-Z)(1-Z^*)=1 \\ \\ 1 -Z -Z^* + Z Z^* = 1\)

 

\(\text{but }Z Z^* = |Z|^2 = 1 \text{ so} \\ 1-Z-Z^* + 1 = 1 \\ Z+Z^* = 1 \\ 2 Re(Z) = 1 \\ Re(Z) = \dfrac 1 2\)

 

\(1 = 1^2 = |Z|^2 = Re(Z)^2 + Im(Z)^2 = \left(\dfrac 1 2\right)^2 + Im(Z)^2 \\ \\ Im(Z)^2 = \dfrac 3 4 \\ \\ Im(Z) = \pm \dfrac{\sqrt{3}}{2} \\ \\ Z = \dfrac 1 2 (1 \pm i\sqrt{3})\)

Rom  Sep 19, 2018
 #2
avatar
+1

Thank you.

Guest Sep 20, 2018

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.