Develop the identity for tan 2A by using the identities for sin 2A and cos 2A.
I've already lost the working for this once. But I will try again.
$$tan(2A)\\\\$$
$$=\frac{sin(2A)}{Cos(2A)}\\\\$$
$$=\frac{2sinAcosA}{Cos^2A-Sin^2A}\\\\$$
$$=\dfrac{\frac{2sinAcosA}{Cos^2A}}{\frac{Cos^2A-Sin^2A}{Cos^2A}}\\\\$$
$$=\dfrac{2tanA}{1-tan^2A}\\\\$$
There you go!