+0  
 
0
930
2
avatar

Develop the identity for tan 2A by using the identities for sin 2A and cos 2A.

 May 19, 2014

Best Answer 

 #2
avatar+118724 
+8

I've already lost the working for this once.  But I will try again.

$$tan(2A)\\\\$$

$$=\frac{sin(2A)}{Cos(2A)}\\\\$$

$$=\frac{2sinAcosA}{Cos^2A-Sin^2A}\\\\$$

 

$$=\dfrac{\frac{2sinAcosA}{Cos^2A}}{\frac{Cos^2A-Sin^2A}{Cos^2A}}\\\\$$

 

$$=\dfrac{2tanA}{1-tan^2A}\\\\$$

There you go!

 May 20, 2014
 #1
avatar+3502 
+3

find tan2A by using the numbers found in sin2A and cos2A and add them

 May 19, 2014
 #2
avatar+118724 
+8
Best Answer

I've already lost the working for this once.  But I will try again.

$$tan(2A)\\\\$$

$$=\frac{sin(2A)}{Cos(2A)}\\\\$$

$$=\frac{2sinAcosA}{Cos^2A-Sin^2A}\\\\$$

 

$$=\dfrac{\frac{2sinAcosA}{Cos^2A}}{\frac{Cos^2A-Sin^2A}{Cos^2A}}\\\\$$

 

$$=\dfrac{2tanA}{1-tan^2A}\\\\$$

There you go!

Melody May 20, 2014

1 Online Users