+0  
 
+5
49
2765
1
avatar

A norman window is in the shape of a rectangle surmounted by a semicircle. What is the ratio of the width of the rectangle to the total height so that it will yield a window admitting the most light for a given perimeter?

 May 7, 2016
 #1
avatar+130548 
0

Let the area of the semi-circle = (1/2) pi*r^2      where r is the radius

Let the height of the semi-circle = r

Let the perimeter of the semi-circle = pi*r

Let the width of the rectangular part of the window  = 2r

The the length of one side of the rectangle =  [ P - pi*r - 2r] / 2    where P is the perimeter

 

The.....the total area, A    =

 

A = (1/2)pi *r^2 + 2r * [ P - pi*r - 2r] / 2 

 

A =  (1/2) pi*r^2 + r  [ P - pi*r - 2r] 

 

A  = (1/2)pi*r^2 + Pr - pi*r^2 - 2r^2

 

Take the derivative

 

A'  = pi*r  + P  - 2pi*r  - 4r

 

A'  = P - r [ 4 + pi]

 

Set the derivative = 0

 

P - r [4 + pi]  = 0

 

P  = r [ 4 + pi ]

 

Solve for r

 

r  = P / [ 4 + pi ]

 

So......the ratio of the width of the rectangular part of the window to the total height  =

 

2r / [ r  + [ P - pi*r - 2r] / 2 ]  =

 

2r /  [ 2r + P - pi*r - 2r] / 2  =

 

4r / [ P - pi*r ]

 

Substitute  P / [ 4 + pi ]  for r

 

(4 P / [ 4 + pi ] )  / (  P - pi *P / [ 4 + pi] )

 

(4P)  / ( 4P + pi*P - pi*P)  =

 

(4P) / (4P) =

 

1 / 1

 

So.....the width of the window = the total height of the window to maximize the area for any given perimeter

 

 

cool cool cool

 May 8, 2016

1 Online Users