+0  
 
0
320
2
avatar

What is the f''(x) of (x/(x2+2))

 

I tried using the calculato by web 2.0 but I think it's incorrect.

Guest Aug 5, 2017
edited by Guest  Aug 5, 2017
 #1
avatar
0

Possible derivation:
d/dx((x f''(x))/(2 + x^2))
Use the quotient rule, d/dx(u/v) = (v ( du)/( dx) - u ( dv)/( dx))/v^2, where u = x f''(x) and v = x^2 + 2:
 = ((2 + x^2) (d/dx(x f''(x))) - x (d/dx(2 + x^2)) f''(x))/(2 + x^2)^2


Use the product rule, d/dx(u v) = v ( du)/( dx) + u ( dv)/( dx), where u = x and v = f''(x):
 = ((2 + x^2) x (d/dx(f''(x))) + (d/dx(x)) f''(x) - x (d/dx(2 + x^2)) f''(x))/(2 + x^2)^2
The derivative of f''(x) is f^(3)(x):
 = (-x (d/dx(2 + x^2)) f''(x) + (2 + x^2) (f^(3)(x) x + (d/dx(x)) f''(x)))/(2 + x^2)^2


Differentiate the sum term by term:
 = (-x f''(x) d/dx(2) + d/dx(x^2) + (2 + x^2) ((d/dx(x)) f''(x) + x f^(3)(x)))/(2 + x^2)^2
The derivative of 2 is zero:
 = (-x (d/dx(x^2) + 0) f''(x) + (2 + x^2) ((d/dx(x)) f''(x) + x f^(3)(x)))/(2 + x^2)^2


Simplify the expression:
 = (-x (d/dx(x^2)) f''(x) + (2 + x^2) ((d/dx(x)) f''(x) + x f^(3)(x)))/(2 + x^2)^2
Use the power rule, d/dx(x^n) = n x^(n - 1), where n = 2: d/dx(x^2) = 2 x:
 = (-x f''(x) 2 x + (2 + x^2) ((d/dx(x)) f''(x) + x f^(3)(x)))/(2 + x^2)^2


Simplify the expression:
 = (-2 x^2 f''(x) + (2 + x^2) ((d/dx(x)) f''(x) + x f^(3)(x)))/(2 + x^2)^2
The derivative of x is 1:
Answer: | = (-2 x^2 f''(x) + (2 + x^2) (1 f''(x) + x f^(3)(x)))/(2 + x^2)^2

Guest Aug 5, 2017
 #2
avatar+27237 
+3

"What is the f''(x) of (x/(x2+2))"

 

.

Alan  Aug 5, 2017

32 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.