+0  
 
0
584
4
avatar

If f(x)=(x^3+2 cos(x))/(2sin(x)), find f'(π/2)

Guest Oct 25, 2015

Best Answer 

 #3
avatar+26823 
+5

Both Melody and Omi have produced the correct result for f'(pi/2)  (Omi's 6pi^2/16 can be simplifird to 3pi^2/8)

 

(but Omi, you should have written f'(pi/2) for your last three f's, not f'(x)) 

.

Alan  Oct 25, 2015
 #1
avatar+92905 
+5

\(f(x)=\frac{x^3+2 cos(x)}{2sin(x)}\\ f'(x)=\frac{(2sinx)(3x^2-2sin(x))-2cos(x)(x^3-2cos(x))}{4sin^2(x)}\\ f'(x)=\frac{(2sinx)(3x^2-2sin(x))}{4sin^2(x)}-\frac{2cos(x)(x^3-2cos(x))}{4sin^2(x)}\\ f'(x)=\frac{(3x^2-2sin(x))}{2sin(x)}-\frac{cos(x)(x^3-2cos(x))}{2sin^2(x)}\\ f'(x)=\frac{3x^2}{2sin(x)}-1-\frac{x^3cos(x)-2cos^2(x)}{2sin^2(x)}\\ f'(x)=\frac{3x^2}{2sin(x)}-1-\frac{x^3cos(x)}{2sin^2(x)}-\frac{cos^2(x)}{sin^2(x)}\\ f'(x)=\frac{3x^2}{2sin(x)}-1-\frac{x^3cos(x)}{2sin^2(x)}-(tan(x))^{-2}\\ \)

 

\(f '(\pi/2) = \frac{3*\frac{\pi^2}{4}}{2}-1-\frac{\frac{\pi^3}{2^3}*0}{2}-0\\ f '(\pi/2) = \frac{3\pi^2}{8}-1\\ f '(\frac{\pi}{2}) = \frac{3\pi^2-8}{8}\)

 

 

 

\(\qquad\frac{d}{dx}\;\frac{x^3cos(x)}{2sin^2(x)}\\ \qquad=\frac{(2sin^2(x))*[3x^2cos(x)-x^3sin(x)]-4sin(x)cos(x)*x^3cos(x)}{4sin^2(x)}\\ \qquad=\frac{[6x^2sin^2(x)cos(x)-2x^3sin^3(x)]-4x^3sin(x)cos^2(x)}{4sin^2(x)}\\ \qquad=\frac{3x^2sin(x)cos(x)-x^3sin^2(x)-2x^3cos^2(x)}{2sin(x)}\\ \qquad=\frac{3x^2sin(x)cos(x)}{2sin(x)}-\frac{x^3sin^2(x)}{2sin(x)}-\frac{2x^3cos^2(x)}{2sin(x)}\\ \qquad=\frac{3x^2cos(x)}{2}-\frac{x^3sin(x)}{2}-\frac{x^3cos^2(x)}{sin(x)}\\ \)

 

\(f'(x)=\frac{3x^2}{2sin(x)}-1-\frac{x^3cos(x)}{2sin^2(x)}-(tan(x))^{-2}\\ f''(x)=\frac{12xsin(x)-6x^2cos(x)}{4sin^2(x)}-\left[\frac{3x^2cos(x)}{2}-\frac{x^3sin(x)}{2}-\frac{x^3cos^2(x)}{sin(x)}\right]+2(tan(x))^{-3}(sec(x))^2\\ f''(x)=\frac{12xsin(x)-6x^2cos(x)}{4sin^2(x)}-\left[\frac{3x^2cos(x)}{2}-\frac{x^3sin(x)}{2}-\frac{x^3cos^2(x)}{sin(x)}\right]+\frac{2cos^3(x)}{sin^3(x)cos^2(x)}\\ f''(x)=\frac{12xsin(x)-6x^2cos(x)}{4sin^2(x)}-\frac{3x^2cos(x)}{2}+\frac{x^3sin(x)}{2}+\frac{x^3cos^2(x)}{sin(x)}+\frac{2cos(x)}{sin^3(x)}\\ f''(\frac{\pi}{2})=\frac{6\pi *1-0}{4*1}-\frac{3x^2*0}{2}+\frac{\pi^3}{16}+\frac{x^3*0}{1}+\frac{0}{1}\\ f''(\frac{\pi}{2})=\frac{3\pi}{2}+\frac{\pi^3}{16}\\ \)

 

Oh dear, I thought I was supposed to find f ''  Maybe I was only supposed to find f '         blush

oh well I will go back and do that too.     angel

Melody  Oct 25, 2015
edited by Melody  Oct 25, 2015
 #2
avatar+9520 
+5

I have differently simplified a little bit.

laugh

Omi67  Oct 25, 2015
 #3
avatar+26823 
+5
Best Answer

Both Melody and Omi have produced the correct result for f'(pi/2)  (Omi's 6pi^2/16 can be simplifird to 3pi^2/8)

 

(but Omi, you should have written f'(pi/2) for your last three f's, not f'(x)) 

.

Alan  Oct 25, 2015
 #4
avatar+9520 
0

Jetzt stimmt es aber. Danke Alan. Manchmal passe ich nicht richtig auf.crying

Now it is the right way.Thanks Alan.Sometimes I did not fit enough to.crying

Omi67  Oct 25, 2015

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.