when x=t+1 and y=3t+2, what is the value of dy/dx?
Since x=t+1 t = x-1 sustitute y= 3(x-1)+2 = 3x-3+2 = 3x-1 then dy/dx = 3
\(\frac{dy}{dx};\) \(x=t+1;\) \(y=3t+2\)
\(\frac{d\times(3t+2)}{d\times(t+1)}\)
\(\frac{1\times(3t+2)}{1\times(t+1)}\)
\(\frac{3t+2}{t+1}\)
x=t+1 t=x-1 \(\frac{dt}{dx}=1\)
y=3t+2 \(\frac{dy}{dt}=3\)
applying chain rule we have
\(\frac{dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx}=3\)
Nice, fiora....!!!!