+0  
 
0
765
4
avatar

when x=t+1 and y=3t+2, what is the value of dy/dx?

 Mar 19, 2016

Best Answer 

 #4
avatar
+5

Since x=t+1      t = x-1     sustitute    y= 3(x-1)+2  = 3x-3+2 = 3x-1     then dy/dx = 3 

 Mar 20, 2016
 #1
avatar+1904 
0

\(\frac{dy}{dx};\)  \(x=t+1;\)  \(y=3t+2\)

 

\(\frac{d\times(3t+2)}{d\times(t+1)}\)

 

\(\frac{1\times(3t+2)}{1\times(t+1)}\)

 

\(\frac{3t+2}{t+1}\)

.
 Mar 19, 2016
 #2
avatar+584 
+10

x=t+1     t=x-1  \(\frac{dt}{dx}=1\)

y=3t+2    \(\frac{dy}{dt}=3\)

applying chain rule we have

\(\frac{dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx}=3\)

 Mar 20, 2016
 #3
avatar+130066 
0

Nice, fiora....!!!!

 

 

cool cool cool

 Mar 20, 2016
 #4
avatar
+5
Best Answer

Since x=t+1      t = x-1     sustitute    y= 3(x-1)+2  = 3x-3+2 = 3x-1     then dy/dx = 3 

Guest Mar 20, 2016

1 Online Users