when x=t+1 and y=3t+2, what is the value of dy/dx?
Since x=t+1 t = x-1 sustitute y= 3(x-1)+2 = 3x-3+2 = 3x-1 then dy/dx = 3
dydx; x=t+1; y=3t+2
d×(3t+2)d×(t+1)
1×(3t+2)1×(t+1)
3t+2t+1
x=t+1 t=x-1 dtdx=1
y=3t+2 dydt=3
applying chain rule we have
dydx=dydt∗dtdx=3
Nice, fiora....!!!!