+0  
 
0
60
2
avatar+11 

Compute the sum
 

\(\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots\)

 Jan 18, 2019

Best Answer 

 #1
avatar+3976 
+3

\(\sum \limits_{n=0}^\infty \dfrac{n!}{(n+1+\delta)!} = \dfrac{1}{\delta \cdot \delta!}\\ 2\sum \limits_{n=0}^\infty \dfrac{n!}{(n+3)!} = \dfrac{2}{2\cdot 2!} = \dfrac 1 2\)

.
 Jan 18, 2019
 #1
avatar+3976 
+3
Best Answer

\(\sum \limits_{n=0}^\infty \dfrac{n!}{(n+1+\delta)!} = \dfrac{1}{\delta \cdot \delta!}\\ 2\sum \limits_{n=0}^\infty \dfrac{n!}{(n+3)!} = \dfrac{2}{2\cdot 2!} = \dfrac 1 2\)

Rom Jan 18, 2019
 #2
avatar+21338 
+6

Compute the sum

\(\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots\)

 

answer see: https://web2.0calc.com/questions/algebra_47009#r4

 

laugh

 Jan 18, 2019

21 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.