+0  
 
0
428
3
avatar+5250 

Given: A(2, 4), B(-4, 2), C(4, -2), D(-1, 3), E(3, 1)

 

Prove: Triangle ABC is similar to Triangle ADE

rarinstraw1195  Mar 3, 2016

Best Answer 

 #1
avatar+2493 
+25

what you need to find is distance from one point to another (sides of triangle):

\(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{ABC}_{triangle}\\ AB=\sqrt {(-6)^2 + (-2)^2}= 6.324555\\ AC=\sqrt {(4 - 2)^2 + (-2 - 4)^2}= 6.324555\\ BC=\sqrt {(4 - (-4))^2 + (-2 - 2)^2}=8.944272 \)

 

 

 

\(ADE_{triangle}\\ AD=\sqrt {(-1 - 2)^2 + (3 - 4)^2}=3.162278\\ AE=\sqrt {(3 - 2)^2 + (1 - 4)^2}=3.162278\\ DE=\sqrt {(3 - (-1))^2 + (1 - 3)^2}=4.472136\)

 

SO:

\(\frac{AB}{AD}=\frac{AC}{AE}=\frac{BC}{DE}=1.999999683772268\)

Solveit  Mar 4, 2016
 #1
avatar+2493 
+25
Best Answer

what you need to find is distance from one point to another (sides of triangle):

\(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{ABC}_{triangle}\\ AB=\sqrt {(-6)^2 + (-2)^2}= 6.324555\\ AC=\sqrt {(4 - 2)^2 + (-2 - 4)^2}= 6.324555\\ BC=\sqrt {(4 - (-4))^2 + (-2 - 2)^2}=8.944272 \)

 

 

 

\(ADE_{triangle}\\ AD=\sqrt {(-1 - 2)^2 + (3 - 4)^2}=3.162278\\ AE=\sqrt {(3 - 2)^2 + (1 - 4)^2}=3.162278\\ DE=\sqrt {(3 - (-1))^2 + (1 - 3)^2}=4.472136\)

 

SO:

\(\frac{AB}{AD}=\frac{AC}{AE}=\frac{BC}{DE}=1.999999683772268\)

Solveit  Mar 4, 2016
 #2
avatar+92806 
+20

Nice work solveit :)

Melody  Mar 5, 2016
 #3
avatar+92806 
+15

Solveit,

Your answer is very good but you would have been better off to stick to exact values.

AD =sqrt (10)

AB = 2*sqrt(10)

 

so     AB/AD = 2

I am sure that this would be true for the other ratios that you looked at as well.

 

So the triangles are similar AND the dimensions of the bigger one are exactly twice that of the smaller one  :))

Melody  Mar 6, 2016

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.