We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
133
1
avatar+149 

given positive integers x y and z 

they satisfy the following equations:

7x^2 - 3y^2 + 4z^2 = 8

16x^2 -7y^2 + 9z^2 = -3

 

what's the value of x^2 + y^2 + z^2 ?

 Nov 24, 2018
 #1
avatar+99417 
+1

7x^2 - 3y^2 + 4z^2 = 8            (1)

16x^2 -7y^2 + 9z^2 = -3          (2)

 

Multiply the first equation through  by 7   and the second through by -3

 

49x^2 - 21y^2 + 28z^2 = 56

-48x^2 + 21y^2 - 27z^2 = 9        add these

 

x^2   +  z^2 = 65

 

Possible integer values for    (x , z) are ( 4, 7)   or  ( 7, 4)

 

Since x^2, z^2  are arbitrary....we can sub (4, 7)  into (1) for (x, z)

And we have

 

7^3 - 3y^2 + 4^3 = 8

 

-3y^3 + 407 = - 3

 

-3y^2 =  - 410

 

This does not produce an integer for y

 

Sub (7,4) = (x, y)  into (1)

 

7(4)^2 - 3y^2 + 4(7)^2 = 8

 

112 - 3y^2 + 196 = 8

 

-3y^2 =  -300

 

y^2 = 100

 

y = 10

 

 

So

 

x^2 + y^2 + z^2   =

 

65 + 100   =

 

165

 

 

cool cool cool

 Nov 24, 2018

14 Online Users

avatar
avatar
avatar