+0  
 
+1
104
1
avatar

Find all complex numbers z such that \(z^4=-4\)
Note: All solutions should be expressed in the form a+bi, where a and b are real numbers. 

 

I know this has been asked a million times but I'm wondering if someone can explain it clearly and easy to understand, sorry

 Apr 5, 2021
edited by Guest  Apr 5, 2021
 #1
avatar
0

By Hamilton's Theorem, the solutions are z = 4^{1/4}*e^(pi*i/4), 4^{1/4}*e^(pi*i/4 + pi/4), 4^{1/4}*e^(pi*i/4 + 2*pi/4), and 4^{1/4}*e^(pi*i/4 + 3*pi/4).  Since 4^{1/4} = sqrt(2) and e^(pi*i/4) = (1 + i)/sqrt(2), the first solution is 1 + i.  Then the other roots work out as

 

4^{1/4}*e^(pi*i/4 + pi/4) = 1 - i,

4^{1/4}*e^(pi*i/4 + 2*pi/4) = -1 - i, and

4^{1/4}*e^(pi*i/4 + 3*pi/4) = -1 + i.

 Apr 25, 2021

13 Online Users

avatar