We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
54
2
avatar

A point (x, y) is a distance of 6 units from the x-axis. It is a distance of 5 units from the point (8, 3). It is a distance \sqrt(n) from the origin. Given that x<8, what is n?

 Sep 25, 2019
 #1
avatar+104962 
+1

Using the Pythgorean Theorem  the point  can be  represented  as :

 

  [x, y ] =  [sqrt (n - 6^2), 6 ]

 

So we have that the distance from (x,y) to (8,3)  =  5 units....so......

 

[ sqrt (n - 6^2) - 8]^2   +  [ 6 -3]^2  = 25      simplify

 

(n - 36)  - 16sqrt(n - 36) + 64  + 9  = 25

 

n - 36 + 73 - 25  =  16sqrt(n - 36)

 

n + 12  =  16sqrt(n - 36)      square both sides

 

n^2 + 24n + 144 = 256n - 9216

 

n^2 - 232n + 9360  = 0   factor as

 

(n - 52) (n - 180)  = 0

 

If n = 52   then x  =  sqrt (52 - 36)  =  sqrt(16)  =  4

If n = 180  then x  = sqrt (180 - 36)  = sqrt (144)  = 12

 

So  (x , y )  =  ( 4, 6)

 

And n = 52

 

Here's a graph 

 

 

Corrected Answer!!!

 

 

 

cool cool cool

 Sep 25, 2019
edited by CPhill  Sep 25, 2019
edited by CPhill  Sep 25, 2019
edited by CPhill  Sep 26, 2019
edited by CPhill  Sep 26, 2019
edited by CPhill  Sep 26, 2019
edited by CPhill  Sep 26, 2019

8 Online Users