Divide and simplify.
t^2+8t/t^2+3t-40 ÷ t/t+5
*No brakets*
Thanks!!!
I assume ( t^2+8t ) / ( t^2+3t-40 ) ÷ t/ (t+5)
\(\begin{array}{rcl} \dfrac{ \dfrac{( t^2+8t )} { ( t^2+3t-40 ) } } { \dfrac{ t} { (t+5) } } &=& \dfrac{ \dfrac{( t^2+8t )} { ( t+8)(t-5 ) } } { \dfrac{ t} { (t+5) } } \\\\ &=& \dfrac{( t^2+8t )} { ( t+8)(t-5 ) } \cdot \dfrac{ (t+5) }{ t} \\\\ &=& \dfrac{( t^2+8t )} { ( t+8)(t ) } \cdot \dfrac{ (t+5) }{ (t-5) } \\\\ &=& \dfrac{( t^2+8t )} { ( t^2+8t ) } \cdot \dfrac{ (t+5) }{ (t-5)} \\\\ &=& \dfrac{ (t+5) }{ (t-5)} \\\\ \end{array}\)
![]()
Divide and simplify.
t^2+8t/t^2+3t-40 ÷ t/t+5
*No brakets*
Thanks!!!
I assume ( t^2+8t ) / ( t^2+3t-40 ) ÷ t/ (t+5)
\(\begin{array}{rcl} \dfrac{ \dfrac{( t^2+8t )} { ( t^2+3t-40 ) } } { \dfrac{ t} { (t+5) } } &=& \dfrac{ \dfrac{( t^2+8t )} { ( t+8)(t-5 ) } } { \dfrac{ t} { (t+5) } } \\\\ &=& \dfrac{( t^2+8t )} { ( t+8)(t-5 ) } \cdot \dfrac{ (t+5) }{ t} \\\\ &=& \dfrac{( t^2+8t )} { ( t+8)(t ) } \cdot \dfrac{ (t+5) }{ (t-5) } \\\\ &=& \dfrac{( t^2+8t )} { ( t^2+8t ) } \cdot \dfrac{ (t+5) }{ (t-5)} \\\\ &=& \dfrac{ (t+5) }{ (t-5)} \\\\ \end{array}\)
![]()