Compute the domain of the real-valued function $f(x) = \sqrt{1 + \sqrt{2 - \sqrt{x}}}$.
The domain is [3,4]
\(x\ge 0\qquad(1)\\ 2-\sqrt x \ge 0\\-\sqrt x \ge-2\\ \sqrt x \le 2\\ x\le 4\qquad (2)\\ domain\;\;\;[0,4] \)