Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
265
1
avatar

Find the greatest integer value of b for which the expression (9x^3+4x^2+11x+7)/(x^2+bx+68) has a domain of all real numbers.

 Jun 30, 2022
 #1
avatar+130466 
+1

The discriminant of   x^2 + bx + 68   must be < 0

 

So

 

b^2 - 4(1) (68)  < 0

 

b^2  - 272 < 0

 

b^2  < 272

 

This will be true when      -sqrt (272) < x < sqrt (272)

 

Greatest integer value for b =   floor[ sqrt (272) ] =    16

 

 

cool cool cool

 Jun 30, 2022

0 Online Users