+0  
 
0
52
5
avatar

What is the domain of the function f(x) = (x + 6)/sqrt(x^2 - 4)?

 May 12, 2022
 #1
avatar+13730 
+1

 

What is the domain?

 

Hello Guest!

 

\( f(x) = \frac{x + 6}{\sqrt{x^2 - 4}}\)

\(\color{blue}\mathbb D=\mathbb R\ |\ x\in \{-2\leq x\leq 2\}\)

laugh  !

 May 12, 2022
 #3
avatar+9457 
0

Note that when x = -2 or x = 2, the denominator will become 0.

MaxWong  May 12, 2022
 #2
avatar+9457 
0

Things inside any square root must be nonnegative and the denominator is nonzero.

 

\(x^2 - 4 \geq 0\text{ and } \sqrt{x^2 - 4} \neq 0 \\ x^2 - 4 \geq 0 \text{ and }x^2 - 4 \neq 0\\ x^2 - 4 > 0\)

 

Continue to solve the inequality, and you will get the domain of the function. 

 

\(\operatorname{Domain}(f) = \{x \in \mathbb R:-2 < x < 2\}\)

 May 12, 2022
 #5
avatar+13730 
0

 

\(\operatorname{Domain}(f) = \{x \in \mathbb R:-2 < x < 2\}\\ correctly\\ Domain\ f(x) = \mathbb R\ |\ -2 \leq x \leq 2\)

laugh  !

asinus  May 12, 2022
edited by asinus  May 12, 2022

7 Online Users

avatar