+0  
 
-1
760
3
avatar+1015 

Drag and drop a statement or reason to each box to complete the proof.

Given: PQ¯¯¯¯¯≅PR¯¯¯¯¯

Prove: ∠Q≅∠R

 

        Statement                                                                             Reason

PQ¯¯¯¯¯ ≅ PR¯¯¯¯¯                                                                   Given

Draw PM¯¯¯¯¯¯ so that M is the midpoint of QR¯¯¯¯¯ .             Two points determine a line.

 (                                    )                                                                Definition of midpoint

PM¯¯¯¯¯¯ ≅ PM¯¯¯¯¯¯                                                                (                                )

(                                    )                                                                 (                                 )

   ∠Q ≅ ∠R                                                                                      (                                  )

 

OPTIONS: CPCTC, QM¯¯¯¯¯≅ RM¯¯¯¯¯¯, △PQM ≅△ PRM , Reflexive Property of Congruence, SSS Congruence Postulate, HL Congruence Theorem 

AngelRay  Nov 14, 2017
 #1
avatar+2077 
+1

This might help you!
 

\(\overline{QM}\cong\overline{RM}\) Definition of midpoint
\(\overline{PM}\cong\overline{PM}\) Reflexive Property of Congruence
\(\triangle PQM\cong\triangle PRM\) Side-Side-Side Triangle Congruence Postulate
   
TheXSquaredFactor  Nov 14, 2017
 #2
avatar+541 
+2

Simple;

PQR is an isosceles triangle, and Q and P are reflected over the one line of symmetry, which happens to be PM if M is the midpoint of PR.

helperid1839321  Nov 14, 2017
 #3
avatar+2077 
+1

Yes, you are right that the isosceles triangle theorem would end this problem in one step.

TheXSquaredFactor  Nov 17, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.