+0

Drag and drop a statement or reason to each box to complete the proof.

-1
2621
3
+1016

Drag and drop a statement or reason to each box to complete the proof.

Given: PQ¯¯¯¯¯≅PR¯¯¯¯¯

Prove: ∠Q≅∠R

Statement                                                                             Reason

PQ¯¯¯¯¯ ≅ PR¯¯¯¯¯                                                                   Given

Draw PM¯¯¯¯¯¯ so that M is the midpoint of QR¯¯¯¯¯ .             Two points determine a line.

(                                    )                                                                Definition of midpoint

PM¯¯¯¯¯¯ ≅ PM¯¯¯¯¯¯                                                                (                                )

(                                    )                                                                 (                                 )

∠Q ≅ ∠R                                                                                      (                                  )

OPTIONS: CPCTC, QM¯¯¯¯¯≅ RM¯¯¯¯¯¯, △PQM ≅△ PRM , Reflexive Property of Congruence, SSS Congruence Postulate, HL Congruence Theorem

Nov 14, 2017

#1
+2340
+1

 $$\overline{QM}\cong\overline{RM}$$ Definition of midpoint $$\overline{PM}\cong\overline{PM}$$ Reflexive Property of Congruence $$\triangle PQM\cong\triangle PRM$$ Side-Side-Side Triangle Congruence Postulate
Nov 14, 2017
#2
+556
+2

Simple;

PQR is an isosceles triangle, and Q and P are reflected over the one line of symmetry, which happens to be PM if M is the midpoint of PR.

Nov 14, 2017
#3
+2340
+1

Yes, you are right that the isosceles triangle theorem would end this problem in one step.

TheXSquaredFactor  Nov 17, 2017