+0  
 
0
655
4
avatar

Alright so I just started with math and I am stuck on this question:

 

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel.
Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.


I've translated from Swedish so I hope you guys can understand it!


This is what I've done so far.


I started by drawing out line A (-4, 6) and (6, -2)

The k in line A is:  \(k = \Delta Y / \Delta X\)\(\Delta Y is 8\)\(\Delta X is 10\)

Meaning that k = 8/10 = 0.8

 

The "m" in line a is: y = 0.8 * x + m

I'll input the first coordinates: 6 = 0.8 * -4 = m
6 = -3.2 + m
6 = -3.2 + 9.2

 

Now I've calculated that K is 0.8 and m is 9.2

 

 

Where do i go from here?

 Nov 30, 2015

Best Answer 

 #4
avatar+26400 
+30

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel. {nl} Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.

 

In General: cut two lines.

 

Line 1 with two Points: \(\dbinom{x_1}{y_1}\) and  \(\dbinom{x_2}{y_2}\)

 

Line 2 with two Points: \(\dbinom{x_3}{y_3}\) and  \( \dbinom{x_4}{y_4}\)

 

The coordinates for the cut eachother is \(\dbinom{x_c}{y_c}\)

\(\boxed{~ \begin{array}{lcl} x_c &=& x_3 + k\cdot (x_4-x_3)\\ y_c &=& y_3 + k\cdot (y_4-y_3)\\ k &=& \dfrac{ (x_3-x_1)(y_2-y_1)-(y_3-y_1)(x_2-x_1) }{(x_2-x_1)(y_4-y_3)-(x_4-x_3)(y_2-y_1)} \end{array} ~}\)

 

 

 

Calculation:

\(\begin{array}{lcl} \text{Line 1 with two Points:} \dbinom{x_1=-6}{y_1=-4} \text{ and } \dbinom{x_2=5}{y_2=7}\\\\ \text{Line 2 with two Points:} \dbinom{x_3=6}{y_3=-2} \text{ and } \dbinom{x_4=-4}{y_4=6}\\\\ \end{array}\\ \begin{array}{lcl} k &=& \dfrac{ [6-(-6)][7-(-4)]-[-2-(-4)][5-(-6)] } { [5-(-6)][6-(-2)]-[-4-(-6)][7-(-4)] }\\\\ k &=& \dfrac{ 12\cdot 11 - 2\cdot 11 } { 11\cdot 8 + 10\cdot 11 }\\\\ k &=& \dfrac{ 12 - 2 } { 8 + 10 }\\\\ k &=& \dfrac{ 10 } { 18 }\\\\ k &=& \dfrac{ 5 } { 9 }\\\\ x_c &=& 6 + \dfrac{ 5 } { 9 }\cdot (-4-6)\\ x_c &=& 6 - \dfrac{ 5\cdot 10 } { 9 }\\ x_c &=& \dfrac{ 54-50 } { 9 }\\ \mathbf{ x_c }& \mathbf{=} & \mathbf{ \dfrac{ 4 } { 9 } }\\\\ y_c &=& -2 + \dfrac{ 5 } { 9 }\cdot [6-(-2)]\\ y_c &=& -2 + \dfrac{ 5\cdot 8 } { 9 }\\ y_c &=& \dfrac{ -18+40 } { 9 }\\ \mathbf{ y_c } & \mathbf{=} & \mathbf{ \dfrac{ 22 } { 9 } } \end{array}\)

 

laugh

 Dec 1, 2015
edited by heureka  Dec 1, 2015
edited by heureka  Dec 1, 2015
 #1
avatar+118724 
0

I have put our question in the eye of the other answerers.  

I hoipe that you get your answer :)

http://web2.0calc.com/questions/unanswered-questions_26956

 Dec 1, 2015
 #2
avatar+33665 
+5

I get the following:

diagonals

 Dec 1, 2015
 #3
avatar+118724 
0

 

Thank you Alan.

 

You are a treasure   laugh

 Dec 1, 2015
 #4
avatar+26400 
+30
Best Answer

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel. {nl} Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.

 

In General: cut two lines.

 

Line 1 with two Points: \(\dbinom{x_1}{y_1}\) and  \(\dbinom{x_2}{y_2}\)

 

Line 2 with two Points: \(\dbinom{x_3}{y_3}\) and  \( \dbinom{x_4}{y_4}\)

 

The coordinates for the cut eachother is \(\dbinom{x_c}{y_c}\)

\(\boxed{~ \begin{array}{lcl} x_c &=& x_3 + k\cdot (x_4-x_3)\\ y_c &=& y_3 + k\cdot (y_4-y_3)\\ k &=& \dfrac{ (x_3-x_1)(y_2-y_1)-(y_3-y_1)(x_2-x_1) }{(x_2-x_1)(y_4-y_3)-(x_4-x_3)(y_2-y_1)} \end{array} ~}\)

 

 

 

Calculation:

\(\begin{array}{lcl} \text{Line 1 with two Points:} \dbinom{x_1=-6}{y_1=-4} \text{ and } \dbinom{x_2=5}{y_2=7}\\\\ \text{Line 2 with two Points:} \dbinom{x_3=6}{y_3=-2} \text{ and } \dbinom{x_4=-4}{y_4=6}\\\\ \end{array}\\ \begin{array}{lcl} k &=& \dfrac{ [6-(-6)][7-(-4)]-[-2-(-4)][5-(-6)] } { [5-(-6)][6-(-2)]-[-4-(-6)][7-(-4)] }\\\\ k &=& \dfrac{ 12\cdot 11 - 2\cdot 11 } { 11\cdot 8 + 10\cdot 11 }\\\\ k &=& \dfrac{ 12 - 2 } { 8 + 10 }\\\\ k &=& \dfrac{ 10 } { 18 }\\\\ k &=& \dfrac{ 5 } { 9 }\\\\ x_c &=& 6 + \dfrac{ 5 } { 9 }\cdot (-4-6)\\ x_c &=& 6 - \dfrac{ 5\cdot 10 } { 9 }\\ x_c &=& \dfrac{ 54-50 } { 9 }\\ \mathbf{ x_c }& \mathbf{=} & \mathbf{ \dfrac{ 4 } { 9 } }\\\\ y_c &=& -2 + \dfrac{ 5 } { 9 }\cdot [6-(-2)]\\ y_c &=& -2 + \dfrac{ 5\cdot 8 } { 9 }\\ y_c &=& \dfrac{ -18+40 } { 9 }\\ \mathbf{ y_c } & \mathbf{=} & \mathbf{ \dfrac{ 22 } { 9 } } \end{array}\)

 

laugh

heureka Dec 1, 2015
edited by heureka  Dec 1, 2015
edited by heureka  Dec 1, 2015

2 Online Users

avatar