+0  
 
0
1040
0
avatar

Answer to each blank to correctly complete the explanation for deriving the formula for the volume of a sphere.

 

 

For every corresponding pair of cross sections, the area of the cross section of a sphere with radius r is equal to the area of the cross section of a cylinder with radius r and height ________ minus the volume of two cones, each with a radius and height of r. A cross section of the sphere is __________, and a cross section of the cylinder minus the cones, taken parallel to the base of cylinder, is __________.

The volume of the cylinder with radius r and height 2r is  2πr3

, and the volume of each cone with radius r and height r is _________ . So the volume of the cylinder minus the two cones is  43πr3 . Therefore, the volume of the cylinder is ___________ by Cavalieri's principle.

 

( possible Answers to the blanks)

r/2  ,  r   ,   2r  ,  an annulus   a circle  , 1/3(pi)r^3   ,   2/3(pi)r^3   ,  4/3(pi)r^3   , 5/3(pi)r^3  ,

2(pi)r^3    ,     4(pi)r^3

 
 Jun 6, 2018

0 Online Users