+0  
 
0
143
4
avatar+199 

Plz help me with this math problem:

Confusedperson  Jun 21, 2018
 #1
avatar
0

I'm not sure if I understand the question, but will take a crack at it:

Let the radius of the hemisphere  = a, then:

The radius of the balloon =a^(1/3)

So the ratio of the 2 radii =a : a^(1/3)

Volume =4/3*pi*r^3

[4/3*pi*(a^(1/3))^3] =[4/3*pi*a^3]/2, solve for a

a =+or- sqrt(2)

P.S. Somebody should look at this. Thanks.

Guest Jun 21, 2018
 #2
avatar+7336 
+1

Let  V  be the volume of the balloon.

 

Let  r1  be the radius of the sphere.

 

Let  r2  be the radius of the hemisphere.

 

\(V=\frac43\pi (r_{\small1})^3\\~\\ \frac3{4\pi}\cdot V=\frac3{4\pi}\cdot\frac43\pi (r_{\small1})^3\\~\\ \frac{3V}{4\pi}=(r_{\small1})^3\\~\\ \sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{(r_{\small1})^3}\\~\\ \sqrt[3]{\frac{3V}{4\pi}}=r_{\small1}\)                 Solve this equation for  r1

 

 

\(V=\frac12\cdot\frac43\pi (r_{\small2})^3\\~\\ V=\frac23\pi (r_{\small2})^3\\~\\ \frac3{2\pi}\cdot V=\frac3{2\pi}\cdot\frac23\pi (r_{\small2})^3\\~\\ \frac{3V}{2\pi}=(r_{\small2})^3\\~\\ \sqrt[3]{\frac{3V}{2\pi}}=\sqrt[3]{(r_{\small2})^3}\\~\\ \sqrt[3]{\frac{3V}{2\pi}}=r_{\small2} \)                  Solve this equation for  r2 .

 

 

The ratio of  r1  to  r2  can be expressed in the form   \(\sqrt[3]{a}\)   for some real number  a .

 

\(\dfrac{r_{\small1}}{r_{\small2}}=\sqrt[3]{a} \\~\\ \dfrac{\sqrt[3]{\frac{3V}{4\pi}}}{\sqrt[3]{\frac{3V}{2\pi}}}=\sqrt[3]{a}\\~\\ \dfrac{\frac{3V}{4\pi}}{\frac{3V}{2\pi}}=a\\~\\ \frac{3V}{4\pi}\cdot\frac{2\pi}{3V}=a\\~\\ \frac14\cdot\frac21=a\\~\\ \frac24=a \\~\\ \frac12=a\)      Plug in the equivalent expressions of  r1  and  r2  and solve for  a .

hectictar  Jun 21, 2018
 #3
avatar
0

Thank you hectictar. Now, I understand it.

Guest Jun 21, 2018
 #4
avatar+7336 
0

laughlaugh   

hectictar  Jun 22, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.