e^-5(pi)j how to calculate??
this website is a caculator...just type it and it will pop up!
e^-5(pi)j
does j = i =sqrt(-1) ?
\(e^{-5\pi i}=cos(-5\pi)+isin(-5\pi)\\ e^{-5\pi i}=cos(\pi)+isin(\pi)\\ e^{-5\pi i}=-1+i*0\\ e^{-5\pi i}=-1\)
\(e^{-5j\pi}=-1\)
Euler's identity: \(e^{j\pi} = -1\)
\(\begin{array}{rcl} e^{j\pi} &=& -1 \qquad &|\qquad ()^{-5}\\ (e^{j\pi})^{-5} &=& (-1)^{-5}\\ e^{-5j\pi}&=& \frac {1}{(-1)^5} = \end{array}\)
\(=\frac{1}{-1} = -1\)