+0  
 
+9
1647
3
avatar+426 

eπ i = -1

Properties : abc = (ab)c

(eπ )i = -1

Calculating eπ, we get:

(23.1406926328)i = -1

i√ on both sides, we get:

23.1406926328 = i√ i5

23.1406926328 = i5 / i

23.1406926328 = i-5 i

Calculate the reciprocals. Properties: 1 / x for x = 22 = 1 / 4 = 2-2.

1 / 23.1406926328 = i5 i 

 

0.04321391827 = i5 i

 

0.043213918271 / 5i = i

 

0.043213918272 / 5i = -1

 

 

Is this factually correct? I'm not sure...

 Apr 3, 2016
 #1
avatar+118673 
+5

Hi MWizzard :)

 

You lost me here

 

23.1406926328 = i√ i5

you wanted

\(\sqrt[i]{-1}=\ {(-1)}^{1/i}\\ Where\; did\; your\; i^5 \;come\; from?\;\;i^5=i \;\;but\;so\;what?\)

 

I might be missing something ://

 Apr 3, 2016
 #2
avatar
0

sum_(n=0)^99 ((-1)^n (pi*i)^n)/n!)~ -1.0000000000000000000000000000000000000000+0.×10^-40 i

Source: Wolfram/Alpha.

 Apr 3, 2016
 #3
avatar
0

As with melody, I'm not sure where your gettin the exponent 5 from. However, I've checked and double checked the math and looked around for another answer online and you aren't the first to notice this, but yes, you're factually correct according to the internet.

 Apr 3, 2016

1 Online Users