a cylindrical tank is 8 meters long and 4 meters in diameter. How many liters of liquid will the tank hold?

Guest Sep 22, 2017

#1**+1 **

**a cylindrical tank is 8 meters long and 4 meters in diameter. **

**How many liters of liquid will the tank hold?**

Let **d** = Diameter of the cylindrical tank **= 4 meters**

Let **r** = Radius of the cylindrical tank **\(\mathbf{= \frac{d}{2}=\frac{4}{2} = 2\, meters}\)**

Let **h** = Height of the cylindrical tank **= 8 meters**

Let **V** = Volume of the cylindrical tank

\(\begin{array}{|rcll|} \hline V &=& \pi r^2 h \\ &=& \pi\cdot 2^2 \cdot 8\ m^3 \\ &=& 32\pi \ m^3 \\ &=& 100.530964915\ m^3 \\ &=& 100.530964915\ m^3 \times \frac{1000\ l}{1\ m^3} \\ &=& 100.530964915 \cdot 1000\ \text{liters} \\ &=& 100530.964915\ \text{liters} \\ \hline \end{array}\)

The Tank will hold** 100531 liters**

heureka
Sep 22, 2017

#1**+1 **

Best Answer

**a cylindrical tank is 8 meters long and 4 meters in diameter. **

**How many liters of liquid will the tank hold?**

Let **d** = Diameter of the cylindrical tank **= 4 meters**

Let **r** = Radius of the cylindrical tank **\(\mathbf{= \frac{d}{2}=\frac{4}{2} = 2\, meters}\)**

Let **h** = Height of the cylindrical tank **= 8 meters**

Let **V** = Volume of the cylindrical tank

\(\begin{array}{|rcll|} \hline V &=& \pi r^2 h \\ &=& \pi\cdot 2^2 \cdot 8\ m^3 \\ &=& 32\pi \ m^3 \\ &=& 100.530964915\ m^3 \\ &=& 100.530964915\ m^3 \times \frac{1000\ l}{1\ m^3} \\ &=& 100.530964915 \cdot 1000\ \text{liters} \\ &=& 100530.964915\ \text{liters} \\ \hline \end{array}\)

The Tank will hold** 100531 liters**

heureka
Sep 22, 2017