+0

evaluate cosec(10)+cosec(50)-cosec(70)

+5
2
1113
4

evaluate cosec(10)+cosec(50)-cosec(70)

Guest Feb 27, 2017

#4
+18956
+10

evaluate cosec(10)+cosec(50)-cosec(70)

Formula:

$$\begin{array}{|rcll|} \hline \sin(10^{\circ}) = \cos(90^{\circ}-10^{\circ}) = \cos(80^{\circ}) \\ \sin(50^{\circ}) = \cos(90^{\circ}-50^{\circ}) = \cos(40^{\circ}) \\ \sin(70^{\circ}) = \cos(90^{\circ}-70^{\circ}) = \cos(20^{\circ}) \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline && csc(10^{\circ})+csc(50^{\circ})-csc(70^{\circ}) \\ &=& \frac{1}{\sin(10^{\circ})} + \frac{1}{\sin(50^{\circ})} - \frac{1}{\sin(70^{\circ})} \\ &=& \frac{1}{\cos(80^{\circ})} + \frac{1}{\cos(40^{\circ})} - \frac{1}{\cos(20^{\circ})} \\ &=& \frac{\cos(20^{\circ})\cos(40^{\circ})+\cos(20^{\circ})\cos(80^{\circ})-\cos(40^{\circ})\cos(80^{\circ})} {\cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})} \\\\ && \cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ}) \\ &&= \frac{ 2\cdot\sin(20^{\circ}) \cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})} {2\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(40^{\circ})\cos(40^{\circ})\cos(80^{\circ})} {2\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(80^{\circ})\cos(80^{\circ})} {4\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(160^{\circ}) } {8\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(20^{\circ}) } {8\cdot\sin(20^{\circ}) } \\ &&= \frac{ 1 } {8} \\\\ &=& 8\cdot [~ \cos(20^{\circ})\cos(40^{\circ})+\cos(20^{\circ})\cos(80^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \\ &=& 8\cdot \{~ \cos(20^{\circ})[\cos(40^{\circ})+\cos(80^{\circ})]-\cos(40^{\circ})\cos(80^{\circ}) ~\} \\\\ && \cos(40^{\circ}) = \cos(60^{\circ}-20^{\circ}) = \cos(60^{\circ})\cos(20^{\circ})+\sin(60^{\circ})\sin(20^{\circ}) \\ && \cos(80^{\circ}) = \cos(60^{\circ}+20^{\circ}) = \cos(60^{\circ})\cos(20^{\circ})-\sin(60^{\circ})\sin(20^{\circ}) \\ && \cos(40^{\circ})+\cos(80^{\circ}) = 2 \cos(60^{\circ})\cos(20^{\circ}) \\\\ &=& 8\cdot [~ \cos(20^{\circ})2 \cos(60^{\circ})\cos(20^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \quad | \quad \cos(60^{\circ}) = \frac12\\ &=& 8\cdot [~ \cos(20^{\circ})\cos(20^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \\\\ && \cos(40^{\circ}) = \cos(80^{\circ}-40^{\circ}) = \cos(80^{\circ})\cos(40^{\circ})+\sin(80^{\circ})\sin(40^{\circ}) \\ && -\cos(60^{\circ})=\cos(120^{\circ}) = \cos(80^{\circ}+40^{\circ}) = \cos(80^{\circ})\cos(40^{\circ})-\sin(80^{\circ})\sin(40^{\circ}) \\ && \cos(40^{\circ})-\cos(60^{\circ})= 2\cos(80^{\circ})\cos(40^{\circ}) \\\\ &=& 8\cdot \{~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot [\cos(40^{\circ})-\cos(60^{\circ})] ~\} \\ &=& 8\cdot \{~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot \cos(40^{\circ})+\frac12 \cos(60^{\circ}) ~\} \quad | \quad \cos(60^{\circ}) = \frac12 \\ &=& 8\cdot [~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot \cos(40^{\circ})+\frac14 ~] \\\\ && 1 = \cos(20^{\circ}-20^{\circ}) = \cos(20^{\circ})\cos(20^{\circ})+\sin(20^{\circ})\sin(20^{\circ}) \\ && \cos(40^{\circ}) = \cos(20^{\circ}+20^{\circ}) = \cos(20^{\circ})\cos(20^{\circ})-\sin(20^{\circ})\sin(20^{\circ}) \\ && 1+\cos(40^{\circ}) = 2 \cos(20^{\circ})\cos(20^{\circ}) \\\\ &=& 8\cdot \{~ \frac12[1+\cos(40^{\circ})] -\frac12 \cdot \cos(40^{\circ})+\frac14 ~ \} \\ &=& 8\cdot [~ \frac12 + \frac12 \cdot \cos(40^{\circ}) -\frac12 \cdot \cos(40^{\circ})+\frac14 ~] \\ &=& 8\cdot (~ \frac12 +\frac14 ~) \\ &=& 8\cdot (~ \frac34 ~) \\ &=& \mathbf{6} \\ \hline \end{array}$$

heureka  Feb 27, 2017
Sort:

#1
0

evaluate cosec(10)+cosec(50)-cosec(70)

=6

Guest Feb 27, 2017
#2
+91786
0

cosec(10)+cosec(50)-cosec(70)=6

This is true but I would like to see how a mathematician can prove it as at present it has me baffled.

Melody  Feb 27, 2017
#3
+5

PROOF:
cosec 10 + cosec 50 - cosec 70
sec 80 + sec 40 - sec 20
(1/cos 80) + (1/cos 40) - (1/cos 20)
(cos 40 + cos 80) / (cos 80 cos 40) - (1/cos 20)
Apply cos A + cos B = 2 cos ((A + B)/2) cos ((A - B)/2)
(2 cos 60 cos 20) / (cos 40 cos 80) - (1/cos 20)
(cos 20) / (cos 40 cos 80) - (1/cos 20)
(cos²20 - cos 40 cos 80) / (cos 20 cos 40 cos 80)

I am gonna solve the denominator seperately,
cos 20 cos 40 cos 80
Multiply and divide by 2 sin 20
(2 sin 20 cos 20 cos 40 cos 80) / (2 sin 20)
2 sin A cos A = sin 2A
(sin 40 cos 40 cos 80) / (2 sin 20)
Multiply and divide by 2
(2 sin 40 cos 40 cos 80) / (4 sin 20)
(sin 80 cos 80) / (4 sin 20)
Again 2,
sin 160 / (8 sin 20)
sin (180 - 20) = sin 20
sin 160 = sin 20
= 1/8
So, denominator is equal to 1/8

Our expression becomes,
8 (cos²20 - cos 40 cos 80)
Take one 2 inside and use 2 cos A cos B = cos ((A + B)/2) + cos ((A - B)/2)
4 (2cos²20 - (cos 120 + cos 40))
2cos²A = 1 + cos 2A
4 (1 + cos 40 - cos 120 - cos 40)
4 (1 - cos 120)
4 (1 - (-1/2))
4 (3/2) = 6

Guest Feb 27, 2017
#4
+18956
+10

evaluate cosec(10)+cosec(50)-cosec(70)

Formula:

$$\begin{array}{|rcll|} \hline \sin(10^{\circ}) = \cos(90^{\circ}-10^{\circ}) = \cos(80^{\circ}) \\ \sin(50^{\circ}) = \cos(90^{\circ}-50^{\circ}) = \cos(40^{\circ}) \\ \sin(70^{\circ}) = \cos(90^{\circ}-70^{\circ}) = \cos(20^{\circ}) \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline && csc(10^{\circ})+csc(50^{\circ})-csc(70^{\circ}) \\ &=& \frac{1}{\sin(10^{\circ})} + \frac{1}{\sin(50^{\circ})} - \frac{1}{\sin(70^{\circ})} \\ &=& \frac{1}{\cos(80^{\circ})} + \frac{1}{\cos(40^{\circ})} - \frac{1}{\cos(20^{\circ})} \\ &=& \frac{\cos(20^{\circ})\cos(40^{\circ})+\cos(20^{\circ})\cos(80^{\circ})-\cos(40^{\circ})\cos(80^{\circ})} {\cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})} \\\\ && \cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ}) \\ &&= \frac{ 2\cdot\sin(20^{\circ}) \cos(20^{\circ})\cos(40^{\circ})\cos(80^{\circ})} {2\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(40^{\circ})\cos(40^{\circ})\cos(80^{\circ})} {2\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(80^{\circ})\cos(80^{\circ})} {4\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(160^{\circ}) } {8\cdot\sin(20^{\circ}) } \\ &&= \frac{ \sin(20^{\circ}) } {8\cdot\sin(20^{\circ}) } \\ &&= \frac{ 1 } {8} \\\\ &=& 8\cdot [~ \cos(20^{\circ})\cos(40^{\circ})+\cos(20^{\circ})\cos(80^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \\ &=& 8\cdot \{~ \cos(20^{\circ})[\cos(40^{\circ})+\cos(80^{\circ})]-\cos(40^{\circ})\cos(80^{\circ}) ~\} \\\\ && \cos(40^{\circ}) = \cos(60^{\circ}-20^{\circ}) = \cos(60^{\circ})\cos(20^{\circ})+\sin(60^{\circ})\sin(20^{\circ}) \\ && \cos(80^{\circ}) = \cos(60^{\circ}+20^{\circ}) = \cos(60^{\circ})\cos(20^{\circ})-\sin(60^{\circ})\sin(20^{\circ}) \\ && \cos(40^{\circ})+\cos(80^{\circ}) = 2 \cos(60^{\circ})\cos(20^{\circ}) \\\\ &=& 8\cdot [~ \cos(20^{\circ})2 \cos(60^{\circ})\cos(20^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \quad | \quad \cos(60^{\circ}) = \frac12\\ &=& 8\cdot [~ \cos(20^{\circ})\cos(20^{\circ})-\cos(40^{\circ})\cos(80^{\circ}) ~] \\\\ && \cos(40^{\circ}) = \cos(80^{\circ}-40^{\circ}) = \cos(80^{\circ})\cos(40^{\circ})+\sin(80^{\circ})\sin(40^{\circ}) \\ && -\cos(60^{\circ})=\cos(120^{\circ}) = \cos(80^{\circ}+40^{\circ}) = \cos(80^{\circ})\cos(40^{\circ})-\sin(80^{\circ})\sin(40^{\circ}) \\ && \cos(40^{\circ})-\cos(60^{\circ})= 2\cos(80^{\circ})\cos(40^{\circ}) \\\\ &=& 8\cdot \{~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot [\cos(40^{\circ})-\cos(60^{\circ})] ~\} \\ &=& 8\cdot \{~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot \cos(40^{\circ})+\frac12 \cos(60^{\circ}) ~\} \quad | \quad \cos(60^{\circ}) = \frac12 \\ &=& 8\cdot [~ \cos(20^{\circ})\cos(20^{\circ})-\frac12 \cdot \cos(40^{\circ})+\frac14 ~] \\\\ && 1 = \cos(20^{\circ}-20^{\circ}) = \cos(20^{\circ})\cos(20^{\circ})+\sin(20^{\circ})\sin(20^{\circ}) \\ && \cos(40^{\circ}) = \cos(20^{\circ}+20^{\circ}) = \cos(20^{\circ})\cos(20^{\circ})-\sin(20^{\circ})\sin(20^{\circ}) \\ && 1+\cos(40^{\circ}) = 2 \cos(20^{\circ})\cos(20^{\circ}) \\\\ &=& 8\cdot \{~ \frac12[1+\cos(40^{\circ})] -\frac12 \cdot \cos(40^{\circ})+\frac14 ~ \} \\ &=& 8\cdot [~ \frac12 + \frac12 \cdot \cos(40^{\circ}) -\frac12 \cdot \cos(40^{\circ})+\frac14 ~] \\ &=& 8\cdot (~ \frac12 +\frac14 ~) \\ &=& 8\cdot (~ \frac34 ~) \\ &=& \mathbf{6} \\ \hline \end{array}$$

heureka  Feb 27, 2017

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details