+0  
 
0
582
2
avatar

exact value of tan pi/6

 Jun 26, 2017

Best Answer 

 #1
avatar+7352 
+2

 

First, let's draw an equilateral triangle where the sides are length  n  and the angles are  pi/3  .

 

Second, draw a line that bisects the angle. Since the other two sides are the same length, it also bisects the opposite side and forms a right angle. This forms the angles   (pi/3)/2  =  pi/6

 

Now, let's look at this third triangle. Let's call the length of the remaining side  " a " .

We can find  " a "  using the Pythagorean theorem.

 

a2 + (n/2)2  =  n2

 

a  = \(\sqrt{n^2-(\frac{n}{2})^2}=\sqrt{\frac{4n^2-n^2}{4}}=\frac{\sqrt3n}{2}\)

 

tan( pi/6 )  =  opposite / adjacent  =  \(\frac{n}{2}\,/\,\frac{\sqrt3n}{2}=\frac{n}{2}\,*\,\frac2{\sqrt3n}=\frac1{\sqrt3}=\frac{\sqrt3}{3}\)

 

No calculator needed !  laughlaugh

 Jun 27, 2017
 #1
avatar+7352 
+2
Best Answer

 

First, let's draw an equilateral triangle where the sides are length  n  and the angles are  pi/3  .

 

Second, draw a line that bisects the angle. Since the other two sides are the same length, it also bisects the opposite side and forms a right angle. This forms the angles   (pi/3)/2  =  pi/6

 

Now, let's look at this third triangle. Let's call the length of the remaining side  " a " .

We can find  " a "  using the Pythagorean theorem.

 

a2 + (n/2)2  =  n2

 

a  = \(\sqrt{n^2-(\frac{n}{2})^2}=\sqrt{\frac{4n^2-n^2}{4}}=\frac{\sqrt3n}{2}\)

 

tan( pi/6 )  =  opposite / adjacent  =  \(\frac{n}{2}\,/\,\frac{\sqrt3n}{2}=\frac{n}{2}\,*\,\frac2{\sqrt3n}=\frac1{\sqrt3}=\frac{\sqrt3}{3}\)

 

No calculator needed !  laughlaugh

hectictar Jun 27, 2017
 #2
avatar+98130 
+1

 

tan (pi /6)  =  1 / √3   =  √3 / 3

 

 

cool cool cool

 Jun 27, 2017

10 Online Users

avatar
avatar