+0  
 
0
494
2
avatar

exact value of tan pi/6

Guest Jun 26, 2017

Best Answer 

 #1
avatar+7340 
+2

 

First, let's draw an equilateral triangle where the sides are length  n  and the angles are  pi/3  .

 

Second, draw a line that bisects the angle. Since the other two sides are the same length, it also bisects the opposite side and forms a right angle. This forms the angles   (pi/3)/2  =  pi/6

 

Now, let's look at this third triangle. Let's call the length of the remaining side  " a " .

We can find  " a "  using the Pythagorean theorem.

 

a2 + (n/2)2  =  n2

 

a  = \(\sqrt{n^2-(\frac{n}{2})^2}=\sqrt{\frac{4n^2-n^2}{4}}=\frac{\sqrt3n}{2}\)

 

tan( pi/6 )  =  opposite / adjacent  =  \(\frac{n}{2}\,/\,\frac{\sqrt3n}{2}=\frac{n}{2}\,*\,\frac2{\sqrt3n}=\frac1{\sqrt3}=\frac{\sqrt3}{3}\)

 

No calculator needed !  laughlaugh

hectictar  Jun 27, 2017
 #1
avatar+7340 
+2
Best Answer

 

First, let's draw an equilateral triangle where the sides are length  n  and the angles are  pi/3  .

 

Second, draw a line that bisects the angle. Since the other two sides are the same length, it also bisects the opposite side and forms a right angle. This forms the angles   (pi/3)/2  =  pi/6

 

Now, let's look at this third triangle. Let's call the length of the remaining side  " a " .

We can find  " a "  using the Pythagorean theorem.

 

a2 + (n/2)2  =  n2

 

a  = \(\sqrt{n^2-(\frac{n}{2})^2}=\sqrt{\frac{4n^2-n^2}{4}}=\frac{\sqrt3n}{2}\)

 

tan( pi/6 )  =  opposite / adjacent  =  \(\frac{n}{2}\,/\,\frac{\sqrt3n}{2}=\frac{n}{2}\,*\,\frac2{\sqrt3n}=\frac1{\sqrt3}=\frac{\sqrt3}{3}\)

 

No calculator needed !  laughlaugh

hectictar  Jun 27, 2017
 #2
avatar+92895 
+1

 

tan (pi /6)  =  1 / √3   =  √3 / 3

 

 

cool cool cool

CPhill  Jun 27, 2017

23 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.