+0  
 
0
1192
9
avatar+32 

what is the exact value of sin pi/5 ??

 Nov 23, 2016

Best Answer 

 #4
avatar+26376 
+10

what is the exact value of sin (pi/5) ?

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(5\varphi) = 16 \sin^5(\varphi) - 20 \sin^3(\varphi) + 5\sin(\varphi) \\ \hline \end{array}\)

 

Ansatz:

\(\small{ \begin{array}{|lrcl|} \hline (1): & \sin(360^{\circ}) = 0 = \sin(5\cdot 72^{\circ}) = 16 \sin^5(72^{\circ}) - 20 \sin^3(72^{\circ}) + 5\sin(72^{\circ})\\ & 16 \sin^5(72^{\circ}) - 20 \sin^3(72^{\circ}) + 5\sin(72^{\circ}) &=& 0 \quad & | \quad : \sin(72^{\circ}) \\ & 16 \sin^4(72^{\circ}) - 20 \sin^2(72^{\circ}) + 5 &=& 0 \quad &| \quad x = \sin^2(72^{\circ}) \\ & 16 x^2 - 20 x + 5 &=& 0 \\\\ (2): & \sin(180^{\circ}) = 0 = \sin(5\cdot 36^{\circ}) = 16 \sin^5(36^{\circ}) - 20 \sin^3(36^{\circ}) + 5\sin(36^{\circ}) \\ & 16 \sin^5(36^{\circ}) - 20 \sin^3(36^{\circ}) + 5\sin(36^{\circ}) &=& 0 \quad & | \quad : \sin(36^{\circ}) \\ & 16 \sin^4(36^{\circ}) - 20 \sin^2(36^{\circ}) + 5 &=& 0 \quad &| \quad x = \sin^2(36^{\circ}) \\ & 16 x^2 - 20 x + 5 &=& 0 \\ \hline \end{array} }\)

 

The quadratic polynomial \(16 x^2 - 20 x + 5\) has following roots: \(<~ \sin^2(72^{\circ}),\ \sin^2(36^{\circ}) ~>\)

 

The general quadratic equation is: \( {\displaystyle ax^{2}+bx+c=0.}\)


The quadratic formula is: \({\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}.}\)

 

\(\begin{array}{|rcll|} \hline x &=& \displaystyle { \frac {20\pm {\sqrt {20^{2}-4\cdot 16 \cdot 5}}}{2\cdot 16}} \\\\ &=& \frac {20\pm {\sqrt { 400 - 320 }}} {32} \\\\ &=& \frac {20\pm {\sqrt { 80 }}} {32} \\\\ &=& \frac {20\pm {\sqrt { 16\cdot 5 }}} {32} \\\\ &=& \frac {20\pm 4 {\sqrt { 5 } }} {32} \\\\ &=& \frac {5\pm {\sqrt { 5 } }} {8} \\\\ \sqrt{x} &=& \sqrt{ \frac {5\pm {\sqrt { 5 } }} {8} } \\ \hline \end{array} \)

 

Because \(\sin(72^{\circ}) > \sin(36^{\circ})\)
we have:

\(\begin{array}{|rcll|} \hline \sin(72^{\circ}) = \sqrt{ \frac {5 + {\sqrt { 5 } }} {8} } \\ \sin(36^{\circ}) = \sqrt{ \frac {5 - {\sqrt { 5 } }} {8} } \\ \hline \end{array}\)

 

laugh

 Nov 23, 2016
 #1
avatar+118613 
+5

 

Again Lisa, you need to use brackets better

 

(sin pi)/5 = 0

 

--------------------------------------------------------------------

 

sin(pi/5)

 

Well wolfram alpha giives an exact value here.

http://www.wolframalpha.com/input/?i=sin(pi%2F5)

 

Not sure how to work that out.........

 Nov 23, 2016
 #2
avatar
+5

sin(Pi rad) /5 = sin(180 deg) /5 =0

sin (Pi/5 rad) = sin(180/5 deg) = sin(36 deg) = 0.587785252292

 

Be exact with using brackets, they are important!

 Nov 23, 2016
 #3
avatar+9664 
+5

\(\sqrt{\dfrac{5}{8}-\dfrac{\sqrt5}{8}}\)??

it equals 

\(\sqrt{\left(\dfrac{\sqrt5-1}{2}\right)\left(\dfrac{\sqrt5}{4}\right)}\)

and the golden ratio = (sqrt5 - 1)/2, and golden ratio is often related to pentagons.

So maybe we can work that exact value out of pentagons? :)

 Nov 23, 2016
 #4
avatar+26376 
+10
Best Answer

what is the exact value of sin (pi/5) ?

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(5\varphi) = 16 \sin^5(\varphi) - 20 \sin^3(\varphi) + 5\sin(\varphi) \\ \hline \end{array}\)

 

Ansatz:

\(\small{ \begin{array}{|lrcl|} \hline (1): & \sin(360^{\circ}) = 0 = \sin(5\cdot 72^{\circ}) = 16 \sin^5(72^{\circ}) - 20 \sin^3(72^{\circ}) + 5\sin(72^{\circ})\\ & 16 \sin^5(72^{\circ}) - 20 \sin^3(72^{\circ}) + 5\sin(72^{\circ}) &=& 0 \quad & | \quad : \sin(72^{\circ}) \\ & 16 \sin^4(72^{\circ}) - 20 \sin^2(72^{\circ}) + 5 &=& 0 \quad &| \quad x = \sin^2(72^{\circ}) \\ & 16 x^2 - 20 x + 5 &=& 0 \\\\ (2): & \sin(180^{\circ}) = 0 = \sin(5\cdot 36^{\circ}) = 16 \sin^5(36^{\circ}) - 20 \sin^3(36^{\circ}) + 5\sin(36^{\circ}) \\ & 16 \sin^5(36^{\circ}) - 20 \sin^3(36^{\circ}) + 5\sin(36^{\circ}) &=& 0 \quad & | \quad : \sin(36^{\circ}) \\ & 16 \sin^4(36^{\circ}) - 20 \sin^2(36^{\circ}) + 5 &=& 0 \quad &| \quad x = \sin^2(36^{\circ}) \\ & 16 x^2 - 20 x + 5 &=& 0 \\ \hline \end{array} }\)

 

The quadratic polynomial \(16 x^2 - 20 x + 5\) has following roots: \(<~ \sin^2(72^{\circ}),\ \sin^2(36^{\circ}) ~>\)

 

The general quadratic equation is: \( {\displaystyle ax^{2}+bx+c=0.}\)


The quadratic formula is: \({\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}.}\)

 

\(\begin{array}{|rcll|} \hline x &=& \displaystyle { \frac {20\pm {\sqrt {20^{2}-4\cdot 16 \cdot 5}}}{2\cdot 16}} \\\\ &=& \frac {20\pm {\sqrt { 400 - 320 }}} {32} \\\\ &=& \frac {20\pm {\sqrt { 80 }}} {32} \\\\ &=& \frac {20\pm {\sqrt { 16\cdot 5 }}} {32} \\\\ &=& \frac {20\pm 4 {\sqrt { 5 } }} {32} \\\\ &=& \frac {5\pm {\sqrt { 5 } }} {8} \\\\ \sqrt{x} &=& \sqrt{ \frac {5\pm {\sqrt { 5 } }} {8} } \\ \hline \end{array} \)

 

Because \(\sin(72^{\circ}) > \sin(36^{\circ})\)
we have:

\(\begin{array}{|rcll|} \hline \sin(72^{\circ}) = \sqrt{ \frac {5 + {\sqrt { 5 } }} {8} } \\ \sin(36^{\circ}) = \sqrt{ \frac {5 - {\sqrt { 5 } }} {8} } \\ \hline \end{array}\)

 

laugh

heureka Nov 23, 2016
 #5
avatar+32 
0

Thank you all very much for your help guys! But I must solve it using the half- angle formulas. Sorry I forgot to mention that, I was in a rush. Also with correct brackets it is sin (pi/5)

 Nov 23, 2016
 #6
avatar
0

Also the problem says that given sin (pi/10) =( -1 + sqrt 5)/4, find sin(pi/5)

 Nov 23, 2016
 #7
avatar+26376 
+5

Thank you all very much for your help guys! But I must solve it using the half- angle formulas. Sorry I forgot to mention that, I was in a rush. Also with correct brackets it is sin (pi/5)

 

Also the problem says that given \(\sin ( \frac{\pi } {10}) = \frac{( -1 + \sqrt{ 5}) }{4}\), find \(\sin ( \frac{\pi } {5})\)

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(2\varphi) &=& 2\cdot \sin{\varphi} \cdot \cos{\varphi} \\ \cos{\varphi} &=& \sqrt{1-\sin^2{\varphi}} \\\\ \sin(2\varphi) &=& 2\cdot \sin{\varphi} \cdot \sqrt{1-\sin^2{\varphi}} \\ \hline \end{array}\)

 

We set:

\(\begin{array}{|rcll|} \hline \sin{2\varphi} &=& \sin( \frac{\pi } {5})\\\\ \sin{\varphi} &=& \sin( \frac{\pi } {10})\\ &=& \frac{ \sqrt{ 5}-1 }{4} \\ \hline \end{array} \)

 

We have:

\(\begin{array}{|rcll|} \hline \sin(2\varphi) &=& 2\cdot \sin{\varphi} \cdot \sqrt{1-\sin^2{\varphi}} \\ \sin( \frac{\pi } {5}) &=& 2\cdot \frac{ \sqrt{ 5}-1 }{4} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (\sqrt{5}-1)^2 }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (5-2\sqrt{5}+1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- 5+2\sqrt{5}-1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{10+2\sqrt{5} }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2 }{4} \cdot \frac{(10+2\sqrt{5}) }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (5-2\sqrt{5}+1)\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 60+12\sqrt{5}-20\sqrt{5}-4\cdot 5 } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 40-8\sqrt{5} } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 8\cdot 5-8\sqrt{5} } {8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{8\cdot 5}{8\cdot 8} -\frac{8\sqrt{5}}{8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{5}{8} -\frac{\sqrt{5}}{8} }\\ \hline \end{array} \)

 

laugh

 Nov 23, 2016
 #8
avatar+118613 
0

Please Lisa can you be careful to include ALL the information in your original question AND be careful to include all neccessasry brackets as well as any extra brackets that will help people to understand your question properly in the first place.

 

Otherwise people waste a lot of their time and next tme they may be less likely to offer you any help at all.

 

Thankyou everyone for your great answers :)

 Nov 24, 2016
 #9
avatar+26376 
0

The same answer.

Using the same formula: \(\sin(\varphi) = 2\cdot \sin{ \frac{\varphi}{2} } \cdot \cos{ \frac{\varphi}{2} } \)

 

Given \(\sin ( \frac{\pi } {10}) = \frac{( -1 + \sqrt{ 5}) }{4} \)

Find \(\sin( \frac{\pi } {5})\)

 

Formula:
\(\begin{array}{|rcll|} \hline \sin(\varphi) &=& 2\cdot \sin{ \frac{\varphi}{2} } \cdot \cos{ \frac{\varphi}{2} } \\ \cos{\frac{\varphi}{2}} &=& \sqrt{1-\sin^2{\frac{\varphi}{2}}} \\\\ \sin(\varphi) &=& 2\cdot \sin{ \frac{\varphi}{2} } \cdot \sqrt{1-\sin^2{\frac{\varphi}{2}}} \\ \hline \end{array}\)

 

We set:

\(\begin{array}{|rcll|} \hline \sin{\varphi} &=& \sin( \frac{\pi } {5})\\\\ \sin{\frac{ \varphi } {2} } &=& \sin( \frac{\pi } {10})\\ &=& \frac{ \sqrt{ 5}-1 }{4} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \sin(\varphi) &=& 2\cdot \sin{ \frac{\varphi}{2} } \cdot \sqrt{1-\sin^2{\frac{\varphi}{2}}} \\ \sin( \frac{\pi } {5}) &=& 2\cdot \frac{ \sqrt{ 5}-1 }{4} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{1- \left(\frac{ \sqrt{ 5}-1 }{4}\right)^2 } \\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (\sqrt{5}-1)^2 }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- (5-2\sqrt{5}+1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{16- 5+2\sqrt{5}-1) }{16} }\\ \sin( \frac{\pi } {5}) &=& \frac{ \sqrt{ 5}-1 }{2} \cdot \sqrt{\frac{10+2\sqrt{5} }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2 }{4} \cdot \frac{(10+2\sqrt{5}) }{16} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (\sqrt{5}-1)^2\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ (5-2\sqrt{5}+1)\cdot (10+2\sqrt{5}) } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 60+12\sqrt{5}-20\sqrt{5}-4\cdot 5 } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 40-8\sqrt{5} } {64} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{ \frac{ 8\cdot 5-8\sqrt{5} } {8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{8\cdot 5}{8\cdot 8} -\frac{8\sqrt{5}}{8\cdot 8} }\\ \sin( \frac{\pi } {5}) &=& \sqrt{\frac{5}{8} -\frac{\sqrt{5}}{8} }\\ \hline \end{array} \)

 

laugh

 Nov 24, 2016

1 Online Users

avatar