+0  
 
0
511
1
avatar

This is an exam question, for Grade 11 high scool students.

 

How would you go about solving this ? cheeky

Guest Nov 3, 2015

Best Answer 

 #1
avatar+92805 
+15

\(2^{2015}\;*\;5^{2019}\\ =2^{2015}\;*\;5^{2015+4}\\ =2^{2015}\;*\;5^{2015}\;*\;5^{4}\\ =(2*5)^{2015}\;*\;5^{4}\\ =10^{2015}\;*\;625\\ =625\;*\;10^{2015}\\ =6.25*10^2\;*\;10^{2015}\\ =6.25*\;10^{2017}\\\)

 

That is how I would solve it    wink   cheeky

Melody  Nov 3, 2015
 #1
avatar+92805 
+15
Best Answer

\(2^{2015}\;*\;5^{2019}\\ =2^{2015}\;*\;5^{2015+4}\\ =2^{2015}\;*\;5^{2015}\;*\;5^{4}\\ =(2*5)^{2015}\;*\;5^{4}\\ =10^{2015}\;*\;625\\ =625\;*\;10^{2015}\\ =6.25*10^2\;*\;10^{2015}\\ =6.25*\;10^{2017}\\\)

 

That is how I would solve it    wink   cheeky

Melody  Nov 3, 2015

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.